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Abstract

Networks play a key role in information diffusion. Yet, the impact of information on network formation is

not well understood. We conducted a randomized experiment in Malawian boarding secondary schools,

providing one fifth of students with exclusive access to an online information source. Using a complete

panel of detailed network data, we show that changes in information access affect network structure, as

students form and maintain strategic links. At the endline, treated students are more well-connected

than control students. We calibrate and simulate a model of strategic network formation to demonstrate

implications for network-based targeting, information diffusion, academic welfare and inequality.
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1 Introduction

The spread of information through social networks shapes individual beliefs and decisions across many

domains, including finance (Banerjee et al., 2013), policy (Bertrand et al., 2014), reproductive health (Baum-

gartner et al., 2022) and technology adoption (Beaman et al., 2021). In theory, information diffusion de-

pends on the structure of the network, and on the network position of each informed node (Jackson et al.,

2017). If networks remain fixed over time, it may be possible to amplify information diffusion by targeting

well-connected people (Banerjee et al., 2019). Yet, gaining direct access to information might also cause a

person to become well connected, as others form strategic links to obtain access. If networks change in

response to policy, network-based targeting may become unnecessary or inefficient.

In this paper, we show that differential access to information has a causal impact on network structure.

We analyze a randomized intervention in Malawian boarding secondary schools, and collect complete

panel data on network connections. One fifth of students were given exclusive access to a reliable, wide-

ranging information source throughout the school year. Students selected for the treatment group were

provided with internet access restricted to Wikipedia. They could access the information resource pri-

vately, after school and on weekends, in a digital library on school grounds. Students had no internet

access outside of the intervention, no mobile phones, and little access to outside information or social

contact.

This isolated setting provides an ideal experimental context in which to manipulate information ac-

cess and map complete networks over time. Our panel data includes a complete and uncensored set of

links across many types of social interactions, classified as either information-sharing links or personal

friendships. The richness of this data allows us to conduct a thorough and nuanced analysis of structural

changes to the network. We are able to document how particular types of links form or break in response

to a node-level shock to information access, and estimate the impact on centrality across various measures

and network definitions.

We first observe that the intervention was indeed a shock to information access for treatment students.

We find that students used the resource intensively to search for many types of information, including

information instrumental to their education (22 percent of browsing time), general knowledge (such as

politics, health and world news), sexuality (7 percent of browsing time), popular culture and entertain-

ment. The average treated student spent one hour and twenty minutes per week accessing information,

and visited nearly 900 different Wikipedia pages. The impact of this intervention on academic perfor-

mance has been shown to be positive, and concentrated among lower ability students (Derksen et al.,

2022). We hypothesized that this shock to information access would make treated students valuable infor-

mation sources, for control students and for each other, and lead to the strategic formation of information

links. Because information is non-rival, information networks might respond flexibly to such a shock.

Our main finding is that consistent, exclusive information access causes network structure to change
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over the long term, as connections between informed students and their peers form and persist with

higher probability. We examine link formation at the dyad level, as measured eight months after the

start of the intervention. We find that, in the information-sharing network, treat-control pairs are .735

percentage points more likely to connect compared to pairs of control students (p = .005). This change,

while concentrated in the information-sharing network, also appears in the full network, which includes

both information-sharing links and personal friendships. This implies that students form completely new

links for information sharing, as opposed to relying on existing information links or personal friendships.

We also observe that pairs of treated students are 1.49 percentage points more likely to form information

links, relative to pairs of control students (p = .011), despite having access to the same information source.

Because the number of treat-control pairs in the network is approximately eight times larger than the

number of treat-treat pairs, the majority of new links are of the treat-control type.1

These connections appear to be used for broad information sharing, as opposed to simply learning

about the new technology itself. When we decompose the treatment effect by past internet experience, we

find that the effect is strongest for control students who do have past experience, as opposed to those who

would have the most to learn. For pairs of treated students, we register the opposite pattern: the effect

is strongest when at least one of the two lacks internet experience, suggesting that treated students with

limited internet proficiency might ask other treated students to search on their behalf. In every case we

observe an increase in information-sharing links across a wide range of topics, measured eight months

after the start of the intervention. We see no increase in personal connections of any type between pairs of

treated students.

At endline, treated students are significantly better-connected than control students according to stan-

dard network centrality measures. We focus on five measures of centrality in the information-sharing net-

work. On average, treated students have a higher degree (.964 additional links) and eigenvector centrality

(.18 standard deviations) than control students. Treated students also have higher diffusion centrality,

with two different sets of parameters, and higher betweenness centrality. These differences are highly

significant, with randomization inference p-values less than or equal to .001. Treated students are in fact

more likely to be among the top five percent by all centrality measures (with p < .1). We do not detect any

significant difference in centrality in the personal friendship network or among other types of contacts.

These differences in network centrality are driven by differences in the number of links as opposed to

differences in link strength; treated students form more new links, and maintain more existing links than

control students.

We ended our intervention with a follow-up exercise to document information diffusion between

treated and control students directly. To do this, we conducted a two-week long incentivized experiment.

This experiment took place after all other data had been collected from the field to avoid contaminating our

endline network measures. We assigned a unique question about a recent news event to each student, and

1Specifically, we estimate that for every treat-treat link induced by the experiment, there are four treat-control links.
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tracked correct answers as well as information sources. We indeed observe that control students were able

to access the new information source indirectly through social ties. We observe widespread information

diffusion from treated students to control students. 51 percent of control students were able to find the

information they needed, despite no access to news media. While 93 percent of treated students reported

finding the answer on Wikipedia, 65 percent of control students who found the correct answer had asked

a treated friend.

We introduce and calibrate a network formation model with a dual purpose. First, it allows us to

interpret the reduced-form estimates – which capture a relative change between the treated and the control

–, as the true changes under a no-intervention counterfactual. Indeed, model simulations confirm that

the no-intervention treatment effects are similar to the ones we observe. Second, and importantly, the

model allows us to illustrate the implications of our findings for network-based targeting, information

diffusion and cost efficiency. The fact that we observe a significant change between baseline and endline

in network structure, and in the composition of central nodes, could potentially offset the advantages of

network-based targeting.

The model simulations show that while centrality-based targeting does lead to more information dif-

fusion than random targeting, the gap in diffusion is cut by half due to the network response. Base-

line centrality measures remain strong predictors of endline centrality, and remain good candidates for

network-based targeting. Yet, random targeting can be used to reach just as many people as network-

centrality-based targeting by adding a few additional random seeds. Random targeting may therefore be

more cost efficient in many contexts. Network-based targeting that relies on centrality measures appears

to outperform targeting strategies that rely on precise network positions, as precise targeting strategies

are very sensitive to the network change.

Finally, we use an information diffusion model to characterize the direct and indirect effects of the

intervention on academic performance, and to illustrate the implications of network-based targeting for

academic welfare and inequality. In previous work, the intervention was shown to have directly benefited

low-ability students who are, on average, also less central (Derksen et al., 2022). Yet, this reduced-form

evidence cannot identify the total effect of the intervention, relative to a no-intervention counterfactual.

It also cannot fully characterize the network-based spillovers, as the network changed over time. We

introduce and calibrate a model in which academic performance depends on both the direct effect of the

intervention, as well as information diffusion through the network. We find that the intervention likely

had large spillovers in our context, and that the total effect of the intervention exceeds the direct effect on

treated students. Moreover, centrality-based targeting leads to a larger increase in academic performance

for both high and lower ability students, due to the large spillover effects. Yet, high ability students benefit

the most from network-based targeting, and random targeting narrows the gap between high and lower

ability students more effectively.

This study has implications for policies that target individuals based on their network positions. Sev-
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eral studies have shown that simple messages diffuse more widely in the network when central messengers

are targeted (Banerjee et al., 2013, 2019; Islam et al., 2021). These studies also show that it is more effec-

tive to target based on measures that are grounded in network theory, as opposed to less sophisticated

measures of social influence (Kim et al., 2015). Our results suggest that using centrality measures to select

candidates for a longer term and more intensive intervention or role may be less effective, as the network

partially adapts over time. On the one hand, Baumgartner et al. (2022) find that using centrality mea-

sures to select peer educators, rather than teacher recommendations, is more effective for teen pregnancy

prevention. Beaman et al. (2021) also find that selecting model farmers based on their network position

leads to greater technology diffusion than the status-quo in which extension workers select model farm-

ers. Yet, neither of these longer-term studies includes a random selection arm. Random selection could

lead to more (or less) network adaptation than selection by authority figures such as teachers or extension

workers, for example if the candidates chosen by authority figures are generally less accessible to their

peers. Akbarpour et al. (2021) show theoretically that random targeting, while suboptimal, can ultimately

produce a level of diffusion that is not far from the maximum level. If, in addition, the network adapts, the

benefits of network-based targeting will be further reduced. Indeed, two studies that do compare network-

based targeting with random selection both find no difference in the diffusion of agricultural knowledge

(Beaman and Dillon, 2018), as farmers frequently seek information outside of their existing networks (Dar

et al., 2020). Finally, collecting complete network data can be costly (Breza et al., 2019), though network-

based targeting need not be very costly to implement in practice, as simple survey measures can yield

useful proxies (Banerjee et al., 2019).

Network-based targeting strategies can also exacerbate inequality, as central individuals are likely

privileged in other ways (Jackson, 2019; Alan et al., 2021). First, many interventions have direct impacts,

and targeting decisions can have important welfare implications. In our setting, the intervention had a

large direct effect on academic performance and reading ability for lower ability students (Derksen et al.,

2022), yet high ability students are much more likely to be central in the network, and stand to benefit most

from network-based targeting. Second, while targeting improves information diffusion, information that

spreads in this way is typically more likely to reach the wealthy and well-connected (Singh et al., 2010;

Beaman and Dillon, 2018; Bandiera et al., 2022). Our results also point to a third source of inequality:

targeting can make already-influential nodes even more influential by increasing their relative network

centrality. On the other hand, this impact is concentrated primarily in the information-sharing network.

Personal friendships appear largely resilient to even a large and sustained information shock.

Our findings demonstrate that an exogenous change in information access can drive strategic link for-

mation. In random models of network formation, link probabilities might be based on homophily (Girard

et al., 2015; Pin and Rogers, 2016), or on endogenous network characteristics such as degree (Barabási

and Albert, 1999). On the other hand, economic theory posits that people invest in social ties for strategic

reasons, including to increase information access (Jackson and Wolinsky, 1996; Calvó-Armengol et al.,
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2015; Capozza et al., 2021).2 Banerjee et al. (2021) find that even when information is publicly available,

information sharing across social ties can lead to broader diffusion and greater understanding. Indeed,

access to information is a source of advantage in many economic models, and knowledge acquisition is

fundamental to human capital formation. A vast empirical literature has shown that access to information

technology has important impacts across a wide variety of economic and political domains (Jensen, 2007;

Bailard, 2012; Miner, 2015; Galperin and Viecens, 2017; Campante et al., 2018; Chen and Yang, 2019; Hjort

and Poulsen, 2019; Derksen et al., 2022). In our study, rather than providing a bundle of information and

communication technology, we restrict our intervention to a pure information source.

Other empirical work has focused on broader network changes at the community level, with networks

defined by context-specific social connections and interactions. The fact that different interventions natu-

rally impact different types of links highlights the value of collecting and analyzing comprehensive and

detailed network data. Work by Binzel et al. (2017) and Banerjee et al. (2022) has shown that formal mi-

crofinance can crowd out informal lending networks, resulting in changes to the structure of the network

at the community level, and Feigenberg et al. (2013) find that social contact increases between members

of the same microfinance group. Heß et al. (2021) find that additional public development funding can

also cause a decline in informal economic ties, as elite capture leads to an erosion of social capital. Finally,

Delavallade et al. (2016) show that randomly selecting students for an after-school program can affect link

formation and produce segregation in the friendship network.3

We also contribute to an emerging empirical literature on the determinants of network structure, by

showing that information access can affect network centrality. Fowler et al. (2009) find that network

characteristics are in part genetically determined, and Hasan and Bagde (2015) show that interacting

with well-connected peers can affect a person’s network position. Other empirical work has identified

correlates of network centrality, and has focused on personality traits (Girard et al., 2015; Morelli et al.,

2017; Alan et al., 2021). Our findings suggest that network centrality is affected not only by intrinsic

traits but also by access to information, and is therefore subject to change over time and in response to

policy. Recent empirical work has shown that social ties can be formed or strengthened in response to an

intervention, without mapping complete networks or analyzing changes in network position. Dar et al.

(2020), Fernando (2021), and Bertelli and Fall (2022) show that farmers learn from well-informed contacts

outside of existing peer groups, and Berg et al. (2019) show that incentives for information diffusion can

overcome the barrier of social distance. Stein (2021) shows that entrepreneurs form strategic links to other

entrepreneurs who have access to a formal training program, and Dimitriadis and Koning (2022) find that

social skills training can encourage profitable peer connections between entrepreneurs.

Finally, our results illustrate an important downside of using baseline network data to estimate peer ef-

fects. Both treatment effect and peer effect estimates may be biased if the network responds endogenously
2Other applied theoretical work has focused on risk sharing as a motivation for link formation, see for example Bramoullé and

Kranton (2007a), Bramoullé and Kranton (2007b) and Ambrus and Elliott (2021).
3This paper relates to another strand of experimental literature involving direct network manipulation, to measure the effects of

having certain types of peers (Sacerdote, 2001; Hasan and Bagde, 2015; Zárate, 2021).
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to the intervention. Recent work in applied econometrics by Comola and Prina (2021) and Griffith (2022b)

has demonstrated this possibility by analyzing network data in the context of an intervention (a finan-

cial access intervention and after-school empowerment program, respectively), while offering alternative

strategies to estimate treatment effects and peer effects.

This paper proceeds as follows. In Section 2 we describe the setting, experimental design and in-

formation seeking behavior among students. In Section 3 we describe our network data. We present

our empirical strategy and results in Section 4. In Section 5 we specify and calibrate models of strategic

network formation and information diffusion. In Section 6 we conclude.

2 Providing Access to Information

We designed an experiment with the goal of obtaining a clean measure of the effect of exclusive informa-

tion access on network link formation. We selected a unique, naturally isolated experimental environment

with limited baseline information access. This allowed us to provide a significant information shock and

map complete social networks. Second, we randomly assigned individuals to obtain information access,

and not groups or entire networks. We can therefore observe how differences at the node level lead to

relative differences in link probabilities and node-level network positions; this is novel relative to existing

literature that primarily uses network-level treatment assignment and analyzes overall network structure

(Feigenberg et al., 2013; Banerjee et al., 2022; Heß et al., 2021).4 Finally, while direct access to informa-

tion was strictly limited to specific nodes in the network, we allowed information to be freely transmitted

from there onward within the bounds of the experimental setting. We now detail the experimental setting

and intervention, we describe how the intervention was effectively used for information access, and we

document widespread information sharing between peers.

2.1 Experimental design

Setting. Malawi is a low-resource country in southern Africa, where internet access is limited but ex-

panding rapidly. As of 2015, 54 percent of households had a mobile device and 12 percent of individuals

had ever used the internet (DHS 2015-16). Data connections though 3G or 4G networks are now available

in urban areas and 2G is available in most rural areas (Batzilis et al., 2010).

The experiment took place in four boarding schools, all of which are government secondary schools.

Admission is competitive and based on standardized exam scores. Secondary school is not free in

Malawi, but bursaries and scholarships are common, and many of the students come from lower so-

cioeconomic backgrounds. Two of the schools are single-sex national boarding schools run by the Catholic

church, which accept girls and boys (respectively) from across the country. The other two schools are

4With a much larger sample size, we could have also assigned some entire networks to a pure control arm. This combination of
cluster- and individual-level randomization would have allowed us to estimate the impact on both relative and absolute differences
in network centrality.
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co-educational district boarding schools. Students progress through four forms (grade levels), and each

form is divided into three different classrooms.5

Intervention. During term time, students have few sources of outside information. At school, mobile

devices are not permitted. Schools have computer rooms and computer classes, but with no internet

access. Students can read books they brought from home, or borrow books from a small school library,

and can of course speak to teachers and to each other.

At each school, we provided a small subset of randomly-selected students with private access to online

information for the duration of the school year. Specifically, we provided access to Wikipedia, an open

source of detailed and up-to-date information on a wide range of topics. By restricting internet access

to Wikipedia, we deliver access to a pure information source, as opposed to the bundle of information,

communication, entertainment and interaction available on the wider internet. While the information

available on Wikipedia may be entertaining, it takes the form of information rather than entertainment.

For example, a Wikipedia may describe the plot of a novel, but it does not contain full works of fiction.

The information on Wikipedia is contributed and edited by volunteers, yet often accurate (Giles, 2005).

Wikipedia is the largest and most visited reference site on the internet.6

One room at each school was designated for use as a digital library after school and on weekends. It

was open for four hours on most weekdays, and for eight hours on Saturday and Sunday. The library

was open for between 20 and 22 weeks total in each school; it was occasionally closed due to exams or

other events. It was managed by a digital librarian hired by the research team, and equipped with twelve

Android devices. We installed an application on each device that allowed us to restrict student access

to applications and websites. Students could access online information via Wikipedia and Wiktionary

domains on Google Chrome, but were not able to access any other applications or websites. Students

were allowed to take notes and to share information outside of the library, but they were not allowed to

work in groups inside the digital library. This was intended to prevent network change by means other

than through information access; if students had been permitted to socialize in the digital library this

could have led to link formation that was not driven by information access. Librarians supervised student

use of the digital libraries for the entire duration of the intervention. They did not monitor the specific

pages students visited.

Before the study began, the digital librarian visited every classroom in the school to introduce the

program to students. The digital librarian informed all students of the nature of the program, including

an explanation of Wikipedia, and the randomized study design. The librarian emphasized that while only

a few students would be selected for the program, they could freely share information they found online

with their friends.
5See Derksen et al. (2022) for additional detail on the educational setting.
6Source: Wikipedia, https://en.wikipedia.org/wiki/Wikipedia, accessed on December 13th, 2021. Wikipedia is free and

owned by Wikimedia, a non-profit organization with no advertising.
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Randomization. We next randomized students to either the treatment arm or the control arm. We strat-

ified the sample based on school, form, whether the student had ever used the internet, and whether

the student’s baseline exam score was above the median. To construct the baseline score, we used ad-

ministrative data from the end of the previous school year, and calculated the average of the student’s

English and Biology scores (core subjects for which we have nearly complete data). Within each stratum,

we assigned only one fifth of students to the treatment arm. This process resulted in 301 treated and 1,207

control students across 51 strata. We chose to treat a small fraction of students with the social network

in mind; our goal is to investigate the effect of providing certain nodes with rare and exclusive access to

information. Indeed, if the resource had been made widely available, students would have been able to

access information firsthand or through existing links, which may have dampened the effect on network

structure.

Students in the treatment arm were invited to an induction session, where they learned how to use

the devices to search for information, and about the privacy protections that were in place. In each

session, students picked a username from a hat, which they would use to log into the devices. In this

way, students knew that their browsing behavior was anonymous. Yet, the username does allow us to

track browsing behavior throughout the year for individual students, and to associate behavior with some

coarsened student characteristics; we constructed induction groups (and username codes) stratified by

school, gender, above-median baseline exam score, and above-median baseline social network degree.

Treatment students could browse Wikipedia by visiting the digital library during opening hours and

signing out a device for use within the library. If a student arrived at the library and all devices were in

use, they were placed on a waitlist, and device use was limited to 30 minutes. The digital librarian was

responsible for checking the student’s identity, recording arrival and departure times for each student,

managing the Android devices, and supervising the library. The librarian ensured that students used the

devices quietly and individually, and did not remove devices from the room. Control students were not

allowed into the digital library, and therefore did not have direct access to the devices.

Data collection. We conducted a baseline survey, and collected administrative data on past exam scores.

The baseline survey captured complete social networks for all students in Forms 2, 3 and 4. We excluded

Form 1 students from the study, because they had only just arrived at the school, and their baseline social

networks would have been noisy or non-existent. We also collected survey data, including social network

data, from the full sample of students at endline, as well as supplementary survey data from all treatment

students and a random subset of control students. We also collected administrative data on student exam

scores throughout the year. We conducted an incentivized information experiment after the endline survey

had taken place, and networks were measured. The network measures were therefore not contaminated

or distorted by these incentives. We then conducted a small follow-up survey after conclusion of the two-

week-long experiment to understand the extent of information spread. We discuss those results in Section
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2.2 below. Finally, we uploaded browsing data directly from the devices throughout the intervention. We

provide further detail on network data in Section 3.

2.2 Information Seeking Behavior

Use of the information source. We collected granular internet browsing data at the individual level

throughout the intervention period. We observe timestamped page visits for each username, which we can

associate to coarsened student characteristics. We classify these pages to broad topics using the Wikipedia

category tree, to specific news events highlighted on Wikipedia, and to school subjects using the Malawi

secondary school syllabus. For additional detail on topic classifications, see the Online Appendix to

Derksen et al. (2022).7

The students used the online resource frequently, found Wikipedia trustworthy and easy to use (Derk-

sen et al., 2022), and browsed pages across a wide range of topics. Every treatment student used the digital

library at least once, and the average student visited 33 times. The average student spent one hour and

twenty minutes per week in the digital library and visited nearly 900 different Wikipedia pages. These

pages span many different topics, including general interest topics (see Figure 1), topics related to sex and

sexuality (7 percent of browsing time) and topics related to the school syllabus (22 percent of browsing

time). The students also used Wikipedia to read about news events.8 At the time of a major event, we

observe a significant spike in browsing activity on related pages, especially if the news concerns Africa

(see Figure 2). General browsing patterns are explored more fully in Derksen et al. (2022).

Information spread. We conducted an incentivized information-seeking experiment to determine to

what extent students were able to access information at school. The experiment took place after endline

data had been collected and, in particular, after endline networks were measured. The experiment involved

all treatment students and a random subset of 298 control students. Each student was given two unique

multiple-choice “quiz” questions. The first question was about a recent news event, and the second was

about an academic subject. Examples of questions include “Who won the 2017 Nobel Peace Prize?” (news)

and “Where is insulin produced?” (academic). Students had approximately two weeks to find the answers

to these questions, and were told that correct answers would be entered into a prize draw.

We find that control students formed or leveraged social ties with treatment students in order to find

the information they needed. In Figure 3, we show the percent of students who found correct answers to

their quiz questions, overall and by information source. The majority of students in both treatment and

control groups were able to find the correct answers. 60 percent of treatment students and 51 percent of

control students were able to correctly answer the news question, despite no access to news media. 68

7Available at https://ars.els-cdn.com/content/image/1-s2.0-S0304387821001632-mmc1.pdf.
8Source: https://en.wikipedia.org/wiki/2017 and https://en.wikipedia.org/wiki/2018. We used Wikipedia itself to

gather a list of 64 major events that happened in the world during our study period. We manually classified the events that
were specific to Africa.
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percent of treatment students and 57 percent of control students found the correct answer to the academic

question. After the experiment, we asked students where they had found the answers to their quiz

questions. The vast majority of treatment students who found the correct answer report doing so using

Wikipedia (93 percent for news, and 83 percent for the academic question). Among control students, the

source of academic information was varied. Most asked a friend (57 percent), but others asked a teacher

(7 percent) or found the answer in the school library (16 percent). For the news question, 69 percent of

those in the control group who found the correct answer had asked a friend, and the vast majority of these

friends were in the treatment group (97 percent).

3 Network Data

3.1 Definitions and Measurement

We conducted baseline and endline surveys with the primary goal of collecting detailed and complete

measures of social networks. The endline survey took place towards the end of the school year but before

the information-seeking experiment described in Section 2.2. At this point network link creation had not

been incentivized beyond the Wikipedia intervention itself. We surveyed all students present at school and

measured many different types of links; relying on subsamples of networks can lead to mismeasurement

of network characteristics Chandrasekhar and Lewis (2016). We also allowed for an unlimited number

of links between students. Indeed, many network surveys limit the number of links a person can report,

and this type of censoring introduces bias in centrality estimates as well as in other peer effect estimators

Griffith (2022a).

We grouped links into two overlapping networks: information-sharing networks and personal friend-

ships. The information network is composed of five sub-networks. We asked students to list the school-

mates they rely on for information by topic, including music, sports, entertainment, school, news, health,

and school activities or topics learned in class. Personal friendships capture a range of interactions at

a more individual and intimate nature, and are also constructed from five survey questions. Personal

friendships include schoolmates who are “best friends”, who have lent the student money or something

else, have given the student a gift, or are relied on for advice. We list the full set of social network survey

questions in Table 1.9

We plot the adjacency matrices for each of these sub-networks for a single school in Figure 4. In this

figure, students were ordered first by form, and then by classroom. A dot represents a link between

students. It is clear that students are more likely to form links within classrooms, and within forms.

We also observe some across-form links, although much less frequently.10 For this reason, we focus our

9We also measured a more general contact network. This network is based on the question “[Yesterday/Two days ago/Three days
ago], did you just hang out, have conversations or play with friends?’́

10Approximately 5 percent of information-links are across-form links, at both baseline and endline.
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analysis on within-form networks.

While there is substantial overlap between the information and personal networks, they are in fact

distinct and differ along several dimensions. At baseline, the average student has 10.8 information links

and 6.4 personal links within their school and form, with 13.5 links overall. This implies that 58 percent of

pairs who are linked in the personal network are also linked in the information network, and 34 percent

of information links are also personal.

We use this data set to construct networks at baseline and endline within each school-form, with on

average 117 students per network. A network g f is a set of N f × (N f − 1) potential links, where form f

has N f nodes. We set g f
ij = 1 if there is a link in either direction between students i and j, both of whom

are in the same form and school. We consider three distinct sub-networks: the information network gI ,

the personal friendship network gP, and the overall network g which consists of a union of both types of

links. We also explore alternative link definitions including directed links and the intersection of directed

links. For directed networks, we define a student’s in-degree as the number of others who nominate a

particular student as a source for information, money, gifts or advice. The out-degree is the number of

others the student nominates.11 At baseline, 26 percent of directed information links and 40 percent of

directed personal links are reciprocated. These patterns are similar at endline: 23 percent of information

links and 38 percent of personal links are reciprocated.

3.2 Centrality Measures

We can use our network data to calculate several standard network centrality measures (Bloch et al., 2019).

The simplest measure of centrality is the degree, defined as the number of other nodes to which i is linked,

di(g) = ∑
j

gij.

Figure A1 shows the degree distribution at baseline and endline, based on the information network. The

average degree is 10.1 and 10.3 at baseline and endline respectively, and the distribution has a substantial

tail of well-connected students.

Eigenvector centrality captures not only the extent to which a node is connected to other nodes, but

also the extent to which those other nodes are themselves highly-connected. This measure is motivated

by the premise that the importance of a node depends on the importance of neighboring nodes. The

eigenvector centrality of a node i, Ce
i (g), is defined in a recursive way, to equal the sum of the centralities

of its neighbors:

λCe
i (g) = ∑

j
gijCe

j (g).

Eigenvector centrality was originally proposed as a measure by Bonacich (1972) and is widely used in the

11There is one exception: we invert the direction for the personal subcomponent “Who have you given a gift to at this school?”, so
that the out-degree always represents a reliance on others, i.e. for advice, loans or gifts.
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literature (Jackson, 2010). 12

We also investigate two versions of diffusion centrality (Banerjee et al., 2013, 2019), which capture the

extent to which an informational shock reaches other nodes in the network. The diffusion centrality of a

node is

Cd(g) =
T

∑
t=1

(qg)t

where q is the probability that the information is transmitted among two connected individuals and t are

the number of iterations on the network. In the first version of diffusion centrality, we set q = 1 and T = 2

(labelled as “number of length-2 walks”). This captures the extent of diffusion when information passes

along every link for two periods. This is an extension of degree centrality, and represents the number

of walks of length two originating from a particular node. In the second, more generalized version of

diffusion centrality, we follow Banerjee et al. (2019) and set q equal to the reciprocal of the top eigenvalue,

while T is equal to the diameter of the graph. This captures the extent of information diffusion that occurs

over a longer time horizon but with lower probability of transmission at the link level. Diffusion centrality

and eigenvector centrality are closely related: in networks with high transmission rates, diffusion centrality

approaches eigenvector centrality as T tends to ∞ (Banerjee et al., 2019).

Finally, betweenness centrality captures the importance of a node as an intermediary along paths between

other pairs of nodes in the network. Define Pi(j, k; g) to be the number of shortest paths between j and k

that pass through i on network g. Then, betweenness centrality is

Cb
i (g) = ∑

j,k={1,...,n}
j ̸=k

j,k ̸=i

Pi(j, k; g)
(n − 1)(n − 2)

as there are (n − 1)(n − 2) potential (j, k) pairs. This measure was first introduced in Freeman (1977)

and is widely used as a notion of node-level exposure to information, effectively as an intermediary of its

transmission.

Throughout our analysis we normalize eigenvector centrality, diffusion centrality and betweenness

centrality for ease of interpretation. We normalize by subtracting the within-form endline control group

mean and dividing by the within-form endline control group standard deviation.

In addition to these centrality measures, we compute each node’s average link strength. For a linked

pair of nodes i and j, the strength of the link is defined as the share of subcomponents that underpin the

link, as defined in Table 1. An information link or personal link has five potential subcomponents, and

a full-network link has ten. A particular node’s average link strength is the average strength calculated

12The equation above can be equivalently expressed as λCe(g) = gCe(g), and Ce(g) = [Ce
1(g), . . . , Ce

n(g)]′. Typically λ is selected as
the largest eigenvalue associated with the adjacency matrix g. By the Perron-Frobenius theorem, the largest eigenvalue is associated
with eigenvectors with positive entries, and thus Ce is non-negative.
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across that node’s existing links.

3.3 Balance and Summary Statistics

Our randomized assignment is balanced on node-level network characteristics including the number of

links, the number of treated links, and network centrality measures among the 1,508 students surveyed at

baseline (Table 2). The randomization is also balanced on non-network student characteristics (Derksen

et al., 2022). We attempted to survey all students again at endline, and collected data for 1,402 students;

the remaining 106 students were not present and many of these students likely left school. We exclude

these students entirely from our network analysis, as their endline network positions cannot be clearly

defined or interpreted. That is, the networks we construct at baseline and endline are defined on the same

set of 1,402 students present at both times. While attrition is low in both treatment and control groups, it

is significantly higher in the control group (8 percent versus 5 percent, Table 2, Panel C). We mitigate the

potential effects of attrition in our main analysis by controlling for baseline centrality measures and other

covariates. Attrition is concentrated in the two district boarding schools; in the two national boarding

schools the attrition rate is only 3 percent, with no significant difference between treatment and control.

As further discussed in Section 4, we are able to replicate our main results on this low-attrition sub-sample.

At baseline, network centrality is highly correlated with certain student characteristics (Table 3). Both

degree and eigenvector centrality are positively correlated with academic ability, female gender, and with

socioeconomic status (SES), as measured by the presence of electricity and running water at the student’s

home. This is particularly relevant in the tail of the distribution, which appears to be dominated by high

ability students. They are, for example, 5 percentage points more likely to be in the top 5 percent of the

distribution according to eigenvector centrality (Column 7 of Table 3). Student browsing behavior, on the

other hand, does not differ significantly by baseline network position (Columns 2, 4, 6 and 8 of Table 3).

Taken together, these correlations suggest that networks are not random, and that beyond information

access, student characteristics likely play a role.

We next characterize how the networks we computed compare to networks studied elsewhere in the

literature. In our setting, students can interact in classrooms, in extracurricular activities, during meal

times and, owing to the fact that these are boarding schools, in their residences. These types of interactions

are not unique to our setting – in fact they are likely similar across many educational settings. Moreover,

the broad range of links we capture, which involve information sharing, gifting and lending, and asking

for advice, likely have analogs in many social contexts. The richness of our network data is evident when

we compare our network descriptive statistics to those of other networks that have been captured in the

literature. In Table A1, we see that when we include all types of links (the full network), we observe an

average degree of 12.7. This corresponds to a more than a 50 percent increase in links compared to the

networks captured in Banerjee et al. (2013) or Coleman (1964). This point is made clearer in a comparison

of our networks with the friendship nominations networks obtained from the National Longitudinal Study
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of Adolescent Health “Add-Health”).13 In Panel A of Appendix Figure A2 we see that the Add-Health in-

degree distribution is comparable to either the personal or information network, but we see a substantial

shift to the right for the full-network degree distribution. Students interact in ways that are not captured

by either of the separate networks in isolation. This highlights the importance of capturing many different

types of links. The AddHealth out-degree distribution (Panel B) sharply falls at 10 nominations. This is

unsurprising given that friendship nominations were capped at that number. In contrast, we did not cap

the nomination process, resulting in the ability to fully observe the right-hand tail of the distribution in

the full network and in both sub-networks.

Having described and contextualized our network data, we now proceed to the results section where

we estimate the causal impacts of information access on link formation and network centrality.

4 Results

In Section 2.2, we saw that treated students used the new information source intensively, accessed in-

formation on a broad set of topics, and shared information widely. Indeed, we document widespread

information diffusion from treated to control students. Most control students were able to find informa-

tion only available online, despite no internet access, by asking a treated student to find it for them.

In this section, we empirically investigate the causal impact of this exclusive information access on

network structure. Our main empirical results are divided in two parts. We first estimate dyad-level

regressions to examine strategic link formation between individual students. We then use individual-level

linear regressions to determine whether the intervention impacted network centrality measures. In the

next section we will calibrate a theoretical model to demonstrate the importance and consequences of the

network changes we observe for network-based targeting, inequality and welfare.

4.1 The Effect of Information Access on Link Formation

Undirected links. We first estimate the impact of treatment status on the probability of an endline link

between students i and j. We use the following dyadic regression specification:

100 × link1
ij = β0 + β1 · TCij + β2 · TTij + α · link0

ij + x′ijχ + ϵij (1)

where link1
ij = 100 if there is a link between i and j at the endline, and zero otherwise. We scale the

outcome by 100 to easily interpret coefficients as percentage point increases. TCij is an indicator that is

equal to one if one student is in the treatment group and the other is in the control group, and TTij is an

indicator for both students being treated. link0
ij is an indicator for a link at baseline. Covariates xij are

13From the data freely available at https://www.icpsr.umich.edu/web/ICPSR/studies/21600/datasets/0003/variables/
ODGX2?archive=icpsr and https://www.icpsr.umich.edu/web/ICPSR/studies/21600/datasets/0003/variables/IDGX2?
archive=icpsr.
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the indicators for same gender, same classroom and form fixed effects. We only consider links within the

same school and form. For each school-form f , the number of observations is the number of potential

undirected links: N f (N f − 1)/2, as we do not include both ij and ji. We estimate this equation separately

for the information network, the personal friendship network, and the union network that includes both

types of links.

Our parameters of interest are β1 and β2. β1 is the increased probability, in percentage points, of a link

between a treatment student and a control student, relative to the likelihood of a link between two control

students. β2 is interpreted as the increased likelihood, in percentage points, of a link between two treat-

ment students, relative to the likelihood of a link between two control students. We use linear regression

to estimate these parameters. TTij and TCij are randomly assigned and independent of ϵij, suggesting

we might interpret these parameters as causal, relative to pairs of control students. We compute classical

heteroskedasticity-robust standard errors, but rely on randomization inference to construct p-values, as

standard errors may be biased when an intervention is randomly assigned to nodes in a social network

(Abadie et al., 2016; Fredrickson and Chen, 2019). Indeed, our intervention likely affects network nodes

indirectly, resulting in a kind of “fuzzy clustering” that randomization inference can usefully address

(Abadie et al., 2016; Blattman et al., 2021). In particular, we can use randomization inference p-values

to reject the sharp null hypothesis of no treatment effect under any vector of treatment assignments (see

Appendix A.1 for additional discussion).

Directed links. We estimate a similar specification for directed links:

100 × link1
ij = β0 + β1 · TCij + β2 · CTij + β3 · TTij + α · link0

ij + x′ijχ + ϵij (2)

where link1
ij = 100 if there is a link from i to j at the endline, that is, if i nominates j, and zero otherwise.

In this specification, TCij is an indicator that is equal to one if i is treated and j is in the control arm, and

CTij is an indicator that is equal to one if i is in the control arm and j is treated. link0
ij is an indicator for

a directed link at baseline, and other covariates xij are as above. For each school-form f , the number of

observations is N f (N f − 1).

In the directed specification, we interpret β1 as the increased probability, in percentage points, of a link

from a treated student to a control student, relative to the likelihood of a control-to-control link. β2 is the

increased probability of a control-to-treat link, relative to the likelihood of a control-to-control link.

Main results: link formation. We find that, at endline, links involving at least one treatment student

become significantly more common than links between two control students (Table 4). The probability of a

link between a pair of control students is 8.43 percent. Treat-control pairs are .735 percentage points more

likely to connect, a relative 9 percent increase. The effects are even higher for pairs of treatment students

(1.49 percentage points, or 18 percent), though estimated with less precision. In the directed specification
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(Panel B of Table 4), we see an increase in both treat-to-control and control-to-treat information links,

but the latter effect is larger. That is, treated students are particularly likely to be named by others as

information contacts.14 The effects are driven by changes to the information network, with no significant

effect on the personal network, and these changes result in significant differences in link probabilities in

the full network. At the outset it was not clear to us whether the intervention would have an effect on link

formation beyond links related to the transmission of information found online. These results suggest that

the impact on the network indeed operates through information-sharing links as opposed to other forms

of friendship or status. Taken together, these findings also indicate that students are not simply adding

information links to existing personal links. Otherwise, we would have expected to see null effects in

the full network, as the full network represents the union of personal and information links. Indeed, the

overlap between the personal network and information network actually decreases over time. At endline,

31 percent of information links are also personal friendships, compared to 34 percent at baseline. Taking

all types of links into account, changes to the information network appear to be driven by the extensive

margin, as opposed to the strengthening of pre-existing connections.

The vast majority of the links causally induced by the treatment are between treated and control

students. In our experiment, the mass of treat-control pairs is substantially larger than treat-treat (27k

versus 3.3k links, respectively), overpowering the difference in the estimates in Column 1 of Table 4.

Overall this suggests that approximately 50 both-treated links were induced by the experiment, compared

to 199 treat-control links, a ratio of approximately 1 to 4. In short, the most important dynamics in the

network seem to originate from treat-control links, despite the relatively lower point estimates for treat-

control pairs as compared to both-treated.

We see limited variation in link strength based on the treatment status of students (Panels C and D of

Figure A3), and we see that changes to the network are due to both created and maintained links (Panel

E of Figure A3). In Table A2, we estimate heterogeneous effects for links that were present or absent at

baseline, as well as the direct effect on the number of created and broken links.15

Second-order effects. In Appendix Table A3 we assess whether link formation depends on number of

other treated links at baseline. For this purpose, we estimate the directed link specification (Equation 2).

We interact the treatment status indicators with the number of other treated friends of i (and j) at baseline,

as well as with the overall number of other friends.16 The treat-to-control and treat-to-treat are unchanged

up to the second decimal. The control-to-treat appears slightly stronger in this version but within the

confidence interval. We interpret this as evidence that potential Stable Unit Treatment Value Assumption

(SUTVA) violations do not greatly affect the estimates in Table 4.

14This rules out the possibility that our results are driven by a particular measurement issue: it is not the case that treated students
are simply naming more contacts than control students, for example, due to higher effort during the survey.

15Column 1 of Table A2 shows that effects are larger for links that were present at baseline (3.68 percentage points versus .463).
Yet, 92 percent of pairs are not connected at baseline. Most of network change is in fact due to new links; the estimates imply that,
for treat-control pairs, approximately 115 new links were created, compared to 89 additional maintained links.

16When calculating the number of friends for each node, we do not include links between i and j themselves.
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The analysis reveals some additional (suggestive) patterns. First, we see no evidence that students pref-

erentially link to others with more treated links. Second, control students who had more treated friends at

baseline appear more likely to connect to another treated student. More specifically, the “Treat-to-control

Link x Number of Treated Friends of j at Baseline” and “Control-to-treat Link x Number of Treated Friends

of i at Baseline” are both positive with sizeable coefficients, and significant under classical inference. It is

possible that students with a higher number of treated friends at baseline value the information source

more, to an extent that outweighs the mechanical effect of having more treated friends. This analysis, how-

ever, is at best suggestive: the coefficients are not significant based on randomization inference p-values.

We conclude that there is inconclusive evidence to support the importance of second-order link formation.

Learning about information technology. The fact that we observe an increase in both-treated links as

well as an increase in treat-control links (see Column 1 of Table 4) suggests that link formation serves a

purpose beyond pure access to the information source. Pairs of treated students both have access to the

same information source, yet do appear to benefit from links. It could be that some treated students are

more proficient than others, and search on others’ behalf or teach others how to use the new technology.

Even between treat-control pairs, is is possible that link formation is driven by a desire to learn about

information technology as opposed to a desire to gain information access more broadly. Next, we will

show that while internet-proficiency differences do explain the increase in links between treated students,

the desire to learn about a new technology does not appear to play a major role in treat-control links.

In Table 5, we interact control and treatment status with an indicator for whether the student had ever

used the internet at baseline (this applies to approximately half of students). For treat-control pairs we

find significant effects when at least one of them had prior internet use. The effects are strongest when

the control student had used internet in the past. This suggests that control students are not primarily

motivated by curiosity about information technology. Instead, these results suggest that students who

already know the value of information technology seek out links for indirect access. On the other hand,

pairs of treated students appear to form links when at least one student had not used internet before. There

is no increase in links among pairs of treated students both of whom have past internet experience. This

is consistent with treatment students having a strong motivation to learn how to use the new technology,

or relying on friends who are more proficient to find information on their behalf. Indeed, next we will

see that pairs of treatment students form links to discuss many different types of information, beyond

discussing the technology itself.

Subcomponents of links: information topics and personal friendships. Information links between

pairs of students appear to involve information sharing across a broad range of topics. To see this, we

note that the information and personal networks are each composed of five subcomponents, based on the

survey questions in Table 1. We can therefore explore link formation along each of those subcomponents.
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In Table 6, we see that students are creating links to discuss many different topics. When it comes to

discussing entertainment, news and school activities, effects are large and significant for both treat-control

pairs and pairs of treatment students. Both types of pairs also appear to discuss school subjects at similar

rates, though the estimate is imprecisely estimated for pairs of treatment students. Health topics appear

to be discussed somewhat less frequently; we observe lower point estimates that are insignificant at the

10 percent level. Health-related information is often sensitive and may therefore be less likely to circulate.

We again find that the results are larger for control-to-treat links than for treat-to-control links; treated

students are frequently named by others as information contacts across a range of topics (Panel B of Table

6).

Turning our attention to the personal network, we find null results for many subcomponents, with

some notable exceptions (Table 7). We find an increase in undirected links between treated and control

students formed for the purpose of discussing personal topics and offering advice. This is driven by an

increase in directed links from control students to treated students, who are also more likely to name

treated students as their best friends (Panel B of Table 7). This is perhaps unsurprising since, from the

previous table and Figure 1, we know that students seek information regarding a vast range of topics,

many of which may be classified as personal or form the basis of personal advice. Interestingly, control

students appear to seek out treated students for this type of advice and friendship, while treated students

do not seek each other out. Indeed, when information resources are available, students may prefer to

learn about personal topics directly, in private.

4.2 The Effect of Information Access on Network Centrality

We next estimate the effect of information access on differences in individual-level network centrality

measures with the following specification.

centrality1
i = β · Ti + α · centrality0

i + x′iχ + γc + λs + ϵi (3)

Here, centrality1
i is either an endline centrality measure for student i, or an indicator for being in the top 5

percent of the centrality distribution. Centrality measures are computed within school and form. Ti is an

indicator for treatment status. We control for the outcome measure at the baseline centrality0
i , classroom

fixed effects γc, as well as other individual-level covariates xi, to increase precision (McKenzie, 2012).17

We also include stratification-bin indicators λs. We use ordinary least squares to obtain an estimate β̂ for

the causal impact of the intervention on network centrality. We again rely on randomization inference to

construct p-values.

When the outcome is a centrality measure, the estimates we obtain must be interpreted as relative

differences in centrality between treated and control students. This estimate is causal in the sense that we
17Covariates include Gender and SES, defined as household having electricity and running water, and above-median academic

ability at baseline.
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can attribute differences in centrality to the randomized intervention and not to unobservable differences

or reverse causality. Randomization inference p-values can be used to test the sharp null hypothesis that

the centrality of each node is exactly as it would have been, regardless of its treatment assignments of the

other nodes in the network (Fredrickson and Chen, 2019). We discuss this test and the interpretation of

our parameter estimates in greater detail in Appendix A.2.

Even relative differences in centrality within a network are relevant for many applications, and are

particularly relevant for network-based targeting. Indeed, targeting policies typically seed the most central

nodes in a network based on their relative positions as opposed to their absolute centrality scores (for

example, in Banerjee et al. 2013, Banerjee et al. 2019, Baumgartner et al. 2022 and many others). More

broadly, relative centrality measures can predict social status and one’s sense of belonging (Alan et al.,

2021).

Importantly, relative differences in centrality should not be interpreted as average treatment effects

under the no-intervention counterfactual.18 In a network, centrality measures are interdependent, and

the Stable Unit Treatment Value Assumption is violated (Rubin, 1974). In fact, when centrality is an

outcome, the treatment effect is not well defined even at the level of a particular node as it will depend on

the treatment statuses of all other nodes. In particular, we must be careful to avoid making conclusions

about absolute changes in centrality. For example, if we find β̂ to be positive, that relative difference

could indicate an increase in links for treated students, a decrease in links for control students, or some

combination thereof. In Section 5.3 we will attempt to further characterize the average treatment effects

on centrality measures using a structural model.

However, we can estimate average treatment effects for the probability of being in the tail of the cen-

trality distribution. When we define our outcome to be an indicator for student i being in the top 5 percent

of the centrality distribution, we can not only compare treated students to control students, but also to

the counterfactual for the treated students themselves in an untreated network. Of course, in an untreated

network, for a randomly selected student, the probability of being in the top 5 percent of the distribution

is 5 percent.

Main results: effects on the information network. We find large and significant difference in network

centrality between treated and control students in the information-sharing network (see Panel A of Table

8). Students randomly selected to gain information access have higher centrality than control students

across all five measures of centrality. Column 1 shows that treatment students on average have .96 addi-

tional links relative to control, from a mean of 10.1 links; this represents a 10 percent relative difference.

This difference is similar in magnitude to the effect of having high socio-economic status (1.33 additional

links, see Table 3). Column 2 of Table 8 shows that eigenvector centrality is .18 standard deviations higher

18These considerations also apply to the dyadic regressions in Section 4.1, though the interpretation is simpler. We interpret our
dyadic estimates as the likelihood of a treat-treat link relative to a control-control link, not relative to a link in a counterfactual
network with no intervention.
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for the students that were exposed to the treatment. This suggests that beyond having a higher number

of links, treated students are in more prominent network positions. These differences are significant with

randomization inference p-values less than or equal to .001, suggesting that the intervention had a causal

impact on network centrality.

These centrality differences are illustrated in Figure 5. In Panel A we plot endline degree against

baseline degree separately for treated and control students. The corresponding plot for eigenvector cen-

trality is in Panel C. We rescale the axes in terms of percentiles for ease of interpretation. The plots show

a distinct positive correlation between baseline and endline centrality. This is not surprising as central

students at baseline tend, on average, to have higher centrality at endline irrespective of treatment status.

Importantly, the figure shows a level upward shift of the treated group compared to the control group.

Moreover, this difference appears to be evenly distributed across the baseline distribution. It is not, for

example, the case that this change in centrality is concentrated among students initially in the upper tail

of the distribution. Panels B and D show the distributions of degree and eigenvector centrality at endline,

again by treatment status. We again see that the centrality distribution for treated students is shifted to the

right, relative to the distribution for control students. At endline, we see a high relatively high prevalence

of treated students in the tail of the distribution, for both centrality measures.

Columns 3 and 4 of Table 8 suggest that treated students are better positioned for information diffusion:

the number of length-2 walks is approximately 8.6 percent higher, and diffusion centrality is .18 units of

standard deviation higher relative to the control group. Treated students are also more likely to act as

intermediaries in the network: betweenness centrality is .24 standard deviations higher in the treated

group. All effects are highly statistically significant with randomization inference p-value of at most .001.

Finally, we observe no significant difference in average link strength between treated and control students

(Column 6 of Table 8 and Panel A of Figure A3). This outcome captures an intensive margin of the

treatment; a positive effect would indicate an increase in interactions with preexisting information links.

The changes we observe are in fact more consistent with information-seeking behavior outside of students’

pre-existing information networks.

Beyond average differences in centrality measures, treated students have a higher probability of being

central at the endline, that is, appearing in the tail of the distribution (Panel B of Table 8). The most central

nodes in a network, sometimes referred to as hubs, often play a particularly important role in network

processes such as information diffusion (Banerjee et al., 2013). While the estimates in Table 8 are subject

to some imprecision, the magnitudes are large. For example, treated students have a 6.3 percent chance of

being in the top 5 percent by eigenvector centrality, suggesting an average treatment effect of 1.3 percentage

points. The difference relative to control students is estimated to be 2.4 percentage points, significant at

the 10 percent level. For context, this coefficient is comparable to the effect of moving from low to high

SES (see Column 7 of Table 3). Similar differences are observed across other centrality measures. For the

number of length-2 walks, diffusion and betweenness centrality, estimates are significant at the 5 percent
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level.

Effects on the personal and full networks. In the personal network, we find near-zero or slightly neg-

ative effects on centrality measures as well as on average link strength, with randomization inference

p-values above .620 in all cases (Table 8, Panel C). These results are entirely consistent with the dyad-level

effects presented in the subsection above: while only information links appear to be directly affected by

the treatment, this has significant implications for the full network. Indeed, treatment effects in the full

network are comparable to the effects in the information network (Panel D of Table 8). Degree increases

by .82 in the full network, compared to .96 in the information network (see Column 1 in Table 8). Point es-

timates for the other four centrality measures are also similar. There is no impact on average link strength,

which again indicates that treated students are becoming more central by forming new links as opposed

to simply strengthening existing links (for example, by sharing information with personal links, or by

sharing new types of information with existing information links).

Mechanisms and robustness. We now provide additional evidence to further rule out competing hy-

potheses. It could be the case that treated students simply spend more time socializing, for example, with

each other. Moreover, the intervention could make treated students more popular for reasons of status or

other reasons unrelated to information access.

We do not find that treatment students simply spend time with a higher number of contacts. In Table

A4 we investigate changes to the contact network, which is constructed using the three-day recall question

“[Yesterday/Two days ago/Three days ago], did you just hang out, have conversations or play with friends?” We find

that no difference in centrality, suggesting that the treatment is not mechanically promoting other types

of interactions that involve simply spending together. Randomization inference p-values are above .497 in

all regressions. This is compounded by the evidence presented above showing that the personal networks

are largely unaffected.19 These results are not surprising, as use of the digital library was limited to quiet,

individual browsing, and this was enforced by our supervising librarians throughout the intervention.

We next turn our attention to the issue of whether the changes in network centrality we observe could

be driven by perceptions or changes in status as opposed to real changes in information access. By

interacting treatment status with an indicator for high use of the mobile library, we are able to perform

a sort of placebo test.20 This regression must be interpreted with caution as use of the digital library is

endogenous. The coefficient cannot be interpreted as a treatment effect, as students with high browsing

times form a selected sample, and we are unable to compare to similar students in the control group.

Nevertheless, in Panel A of Table A5 we see that those simply belonging to the treatment group but not

using the digital library do not have significantly more links than the control group. The difference only

19This is also consistent with our data on student time use, shown in Table 5 of Derksen et al. (2022). Treated students substitute
away from recreational activities in a magnitude comparable to the take-up of the digital library.

20“High browsing” is defined as above-median hours of use across the duration of the experiment.
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materializes for those individuals who also made above-median use of the digital library. This is consistent

with the idea that actually accessing online information is driving the treatment effects.

Heterogenous effects by baseline academic ability, SES, gender, and baseline degree are largely absent,

though some estimates are imprecise (Table A5, Panels B to E). This latter finding is consistent with

Panels A and C of Figure 5, in which centrality differences between treated and control students appear

broadly homogeneous by baseline degree. This apparent lack of heterogeneity across individual-level

characteristics will allow us to specify a simple yet informative model in Section 5.

The changes in the network we observe are due to both new and maintained links, and our results

are robust to alternative definitions of the network. Columns 1 and 2 of Table A6 show differences in

link creation and destruction between treated and control students. We find that students with access

to information both create more new links, and destroy fewer existing links than control students. New

link creation appears to dominate (.647 versus -.316). In Column 3, we define the network based on the

intersection of directed links. That is, for a link to exist in this network, it must be reciprocal. While the

estimates are smaller, they remain significant and the broad conclusions are unchanged. In Columns 4

and 5, we use directed networks to decompose the main effects into in- and out-degrees. We find that the

main results are driven by a difference in in-degree. Treatment students are more likely to be nominated

by others, and also nominate more links themselves, but the latter effect is not significant. Finally, in

Column 6, we calculate a student’s weighted degree by adding up all of their link strengths. We find that

weighted degree is higher among treated students. Across this table, differences are broadly present in

the information and full networks (Panels A and C) and absent from the personal network (Panel B).

Finally, we show that the main results are robust to reasonable alternative specifications of the empirical

models. In Table A7 we remove all controls except for stratification bin indicators. The estimates remain

broadly significant and of similar magnitude, although with lower precision. In Table A8 we explore

robustness to attrition. A small number of students were not present at endline and may have left school,

and control students were more likely to attrit than treated students (see Panel C of Table 2). We therefore

restrict the sample to the two National schools. These higher quality schools had very low attrition (<3

percent) and, importantly, there was no differential attrition between treatment and control. The results

are very similar to the full-sample regressions in Table 8, and remain broadly significant.

5 Model, Calibration and Simulations

In this section we characterize the importance of network-based targeting for information diffusion with

and without endogenous network response, and explore implications for inequality and welfare. While

our reduced-form estimates indicate large and significant effects on network centrality, they do not allow

us to fully explore the implications of these effects for network-level information diffusion. In particular,

we are not able to say whether these effects are large enough to offset the benefits of network-based target-
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ing. We therefore specify and calibrate a dyadic model of network formation, adopting the general setup

in Jackson and Wolinsky (1996), and allowing strategic link formation based on information access. We

generate basic theoretical predictions about link formation and centrality, extend and calibrate the model,

and simulate policy counterfactuals. We find that under the endogenous network response, network-based

targeting retains an advantage over random targeting in terms of information diffusion, but this comes at

the cost of greater inequality and lower academic welfare. Importantly, the diffusion-advantage is reduced

by half when the endogenous network response is taken into account.

5.1 A Model of Strategic Link Formation

Consider a set of nodes {1, 2, ..., N}. Each pair of nodes obtains utility 0 if there is no link between them,

and uij if there is a link. This utility depends on the treatment status of each node. In particular, a

node with exclusive information access might be more attractive, and this might also depend on the other

node’s information access. We model the utility of a link as follows:

uij = κTCTiCj + κCTCiTj + κTTTiTj + νij, (4)

where Ti = 1 is an indicator for the treatment group, and Ci = 1 − Ti is an indicator for the control

group, which we assume to be larger than the treatment group. Parameter κTC captures the benefit to

treatment node of linking to a control node. This will be positive if the treatment node gets utility from

serving as an information source for control students and sharing information, and zero otherwise. κCT

is the benefit to a control node of linking to a treatment node. A control students may value linking

to a treated student both because this allows them to actively search for information, and because they

become the passive recipient of information that treated students decide to share. We hypothesize that

this parameter is positive, and larger than κTC as control nodes value increased access to information

more than treated nodes like to share information. Finally, κTT captures the benefit to a treatment node

of linking to another treatment node. We again hypothesize that this parameter is positive; a person with

information access gets positive utility from talking to their informed friends, because they might search

for and share different information.21

We have assumed that link utility depends only on direct access to information, as opposed to indirect

access via second-order links. Second-order link utility is important if nodes can access information

indirectly by linking to others who are themselves linked to nodes in the treated group. It is difficult to

say how allowing for second-order link utility would impact the network, as these types of models do not

in general give rise to pairwise-stable equilibria (Jackson, 2010), and simulations would therefore require

a more complicated setup and different assumptions. Such complications may not be worthwhile, as we

note that, in our setting, most students appear to benefit from direct link formation only, as opposed to
21Recall that treated students could not speak to one other in the digital library owing to the design of the intervention. κTT is

therefore unlikely to capture an increase in opportunities to socialize.
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gaining utility from second-order link formation (see Table A3). Moreover, our information experiment

revealed that 97% of control students who asked for information asked a treated peer directly (see Section

2.2). Finally, we do not see a significant change in the probability of a link between a pair of control

students at baseline (0.087) versus at endline (0.084), suggesting that the network response was mostly

limited to links that involve treated students directly.

The term νij captures a sort of underlying benefit (or, if negative, cost) to node i of forming a link

to node j, ignoring information access. If both nodes are in the control group, this captures the entire

net benefit of the link. This benefit may have some symmetry, for example, two people that share com-

mon interests. But it is not necessarily symmetric. For example, one person might be particularly kind,

or generous, or intelligent. For simplicity and ease of exposition, we model νij as independently and

identically distributed, but not necessarily having mean zero. In our setup, the utility of a link does not

depend on the wider network, nor on the other links of the nodes in question. It only depends on the

independently-distributed term νij and on the treatment status of each of the two nodes. In particular, this

means that nodes consider forming new links independently of their existing links. Again, this simpli-

fies the model and guarantees the existence of a pairwise-stable equilibrium. However, it cannot capture

considerations such as conversation capacity: the idea that students may simply not be able to maintain a

very large number of friendships. Intuitively, if students must choose between friends, we would expect

to see the probability of a link between a pair control students to decline over time. Again, because this

probability is similar at baseline and endline, and because personal friendship networks were unaffected

by the intervention, we believer our independence assumption to be reasonable.

The inclusion of νij in equation 4 implies that the utility of a link does depend on underlying charac-

teristics of each node. Yet, we assume that when a link is treated, the marginal increase in link utility does

not depend on node characteristics. That is, the information itself is equally valuable, regardless of who

it comes from. This assumption may be justified if nodes believe, or learn over time, that the information

source (for example, Wikipedia) is reliable, and that nodes (students) are generally capable of transmit-

ting the information across links, regardless of their network position. The assumption is also consistent

with our empirical findings: we do not find significant heterogeneous treatment effects by baseline char-

acteristics or baseline network position. However, one might imagine a setting or intervention in which

information is only believed if obtained from a central student. In such a setting, each term in equation

4 should be interacted with student baseline network characteristics. Such a model could lead to very

different conclusions with respect to network response. If initially-central students are more likely to be

believed, the intervention may lead to a concentration of the network around these students, rather than a

decrease in their relative centrality over time. Our empirics suggest that this type of network concentration

is unlikely when the information source is reliable and the network response takes place over an extended

period of time.

We allow nodes to form links by mutual consent, and to sever links unilaterally. This results in a
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unique pairwise-stable network.22 In the case where uij > 0 for both nodes, a link will be formed. If either

node has uij < 0, no link will be formed. Note that situations may arise where one node wants to link to

another who does not. In this case, no link will exist.23 The resulting network will take the form

g = {ij : uij ≥ 0, uji ≥ 0}.

This model of network formation simply corresponds to a general random graph (Erdos et al., 1960;

Söderberg, 2002). The probability of a link between nodes i and j is independent across links, and takes

one of three possible values which depend on the distribution of ν,

P(gij = 1) =


PCC ≡ P(ν > 0)2, if Ti = Tj = 0

PTT ≡ P(ν > −κTT)
2, if Ti = Tj = 1

PTC ≡ P(ν > −κTC)P(ν > −κCT) if Ti ̸= Tj.

(5)

We illustrate some simple theoretical predictions about link formation in Figure 6, with ν uniformly

distributed on (−1, 1). First, if κTT > 0, we expect to see a higher probability of a link between treatment

nodes, relative to a link between control nodes. This captures the utility people with information access

get from talking to each other. If (1 + κTC)(1 + κCT) > 1, we expect an increase in the probability of a

link between treatment and control nodes. Finally, if (1 + κTC)(1 + κCT) > (1 + κTT)
2, we expect that the

increase in links between treatment and control nodes will be larger than the increase in links between

two treated nodes, as the desire to seek new information dominates the desire to discuss information two

nodes both have access to.

Next, we will demonstrate some theoretical predictions related to degree and eigenvector centrality. At

this point, we will assume that κTC > 0, κCT ≥ 0 and κTT ≥ 0, so that PTC > PCC. That is, links between

control and treated nodes strictly increase in response to the intervention. We first demonstrate that the

expected degree of a treated node is larger than that of a control node.

Theorem 5.1. Let PTT ≥ PCC and PTC > PCC. Suppose that the number of nodes in the control group, NC is

larger than the number of nodes in the treatment group, NT . Then, treatment nodes have a larger expected degree

than control nodes.

The proof is in Appendix A.3, and the intuition is as follows. Links between treatment and control nodes

are on average more beneficial than links between pairs of control nodes. Because there are few treatment

nodes, it is not possible for control nodes to increase their degree by much, whereas treatment nodes have

many potential control nodes to choose from. If PTT > PCC this effect is amplified, as treatment nodes also

22Pairwise stability, as defined by Jackson and Wolinsky (1996), applies to networks in which no player would benefit from severing
a link, and no two players would both benefit from forming a new link.

23Note that the concept of mutual consent is different from the concept of a reciprocated link in the data. If one student borrows
money from another, this is captured empirically as an unreciprocated link. Yet, both students consented to the interaction. We
therefore include this type of link in the undirected network, both empirically and theoretically.
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form additional links with each other.

Treatment nodes with information access differ from control nodes not only in terms of expected

degree, but also in terms of composition of links. In particular, the probability that a linked node is

treated, given the treatment status of the node itself, is a function of PCC, PTT and PTC:

P(Tj = 1|gij = 1, Ti = 1) =
PTT(NT − 1)

PTT(NT − 1) + PTC NC

P(Tj = 1|gij = 1, Ci = 1) =
PTC(NT)

PTC(NT) + PCC(NC − 1)
.

This implies broader potential impacts on network structure and network centrality. Whether a person

has information access affects not only the number of links they form, but the characteristics of those

links. For example, if PTT is relatively large, treatment nodes will have a higher number of links, and also

a higher proportion of treated links, who are themselves more likely to be well-connected. So, even if link

decisions are made without taking the wider network into account, these decisions could affect centrality

measures that depend on the wider network, such as eigenvector centrality.

Simulations of the model allow us to illustrate how access to information can cause not only an increase

in direct links, but also an increase in eigenvector centrality. Figure 7 plots average degree, eigenvector

centrality and diffusion centrality (again with parameters as in Banerjee et al. (2019)) for simulated net-

works based on this model. We simulate 1000 100-node networks, with 20 treatment nodes and 80 control

nodes, and fix PCC = .1. This loosely approximates our experimental setting for illustrative purposes;

we will calibrate the model precisely in the next subsection. We vary PTC and PTT . Holding the other

parameter fixed, we see that increasing either PTC or PTT results not only in an increase in degree for

treated nodes, but also an increase in both eigenvector and diffusion centrality.

5.2 Extension and Calibration

We now use method-of-moments estimates to calibrate the model in Section 5. We then simulate the cali-

brated model to compare network-based targeting to random targeting in terms of information diffusion,

inequality and academic welfare.

To do this, we must extend our model in two ways. First, to examine the effect of targeting based on

baseline network position, we must model the baseline network explicitly, and allow for links to persist

over time. Second, to examine implications for inequality and welfare, we incorporate the possibility

that students have other sources of privilege or advantage that persistently attract links. In our data, the

largest predictor of baseline centrality is academic ability, and baseline degree increases sharply at the top

of the distribution (Figure A4). Academic ability is also arguably the most important source of individual

advantage in our context. By including this variable, we generate a better fit for the degree distribution as

well as the persistence of centrality over time, and we facilitate welfare calculations.
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We model baseline link utilities as follows:

u0
ij = ∑

θ1,θ2∈{L,H}
1{θi = θ1, θj = θ2}κθ1θ2

CC + ν0
ij. (6)

Here, θi represents the academic type for i. H refers to high academic ability, and L refers to low ability.

We define a student to be high ability if they belong to the top decile of the exam-score distribution, using

the baseline normalized average of English and Biology exam scores.24 We model the endline link-utility

as

u1
ij = ∑

θ1,θ2∈{L,H}
1{θi = θ1, θj = θ2}(κθ1θ2

CC CiCj + κθ1θ2
TC TiCj + κθ1θ2

CT CiTj + κθ1θ2
TT TjTj) + ν1

ij. (7)

We are allowing the value of information to be different for high and lower-ability students, and for the

value of information from a high-ability source to differ from the value of information from a lower-ability

source. To capture correlation in links over time, we assume that ν0
ij = ν1

ij with some probability (1 − δ),

and that otherwise these error terms are independent and identically distributed.

This extended model is both general and tractable. It is flexible enough to allow for any degree of

link persistence between baseline and endline (as captured by δ). It also allows for baseline centrality

patterns to be weakened or amplified over time. For example, if the marginal utility of linking to a treated

node, as captured by κCT , κTC and κTT , is much higher for high-ability treated nodes, this will amplify the

relationship between ability and centrality, resulting in an even more concentrated network at endline. We

could have modeled this potential for amplification in a different way, for example by using a preferential

attachment model (Barabási and Albert, 1999) or otherwise allowing link probabilities to depend directly

on network positions. However, this would complicate the model considerably, in the sense that it could

no longer be represented by a general random graph, and may not provide a better fit. Indeed, our

empirics suggest a degree of mean reversion, as opposed to amplification, of centrality over time (see

Figure 5, Panels A, C and E), and limited heterogeneous effects by baseline centrality (see Appendix Table

A5, Panel E).

To calibrate the model, we match moments from the model to moments in our empirical information

network. The empirical moments we use include the probability of an endline link between students

according to treatment status and ability type, and the persistence of control-pair links over time. We

simulate a baseline network and an appropriately-correlated endline network. The precise steps involved,

and calibrated parameters, are detailed in Appendix A.4. Our calibrated parameters suggest a moderate

level of persistence between baseline and endline networks. Baseline links persist to endline 35 to 48

percent of the time (depending on ability types). The marginal utility of linking to a treated student is

positive across all ability-type combinations, and is highest between high-ability pairs.

24We have nearly complete academic score data for these two core subjects, and we assume students with missing scores are lower
ability.
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5.3 Model Fit and Average Treatment Effects

We next assess the quality of fit between our model and our empirical findings. We simulate networks with

117 nodes and 23 treated nodes, chosen to match the average network size and treatment intensity in our

data. We then compare simulated moments to their empirical counterparts, not including the moments we

used for calibration. Table 9 contains moments from 10,000 simulated networks and matched summary

statistics from our data.

The model appears to capture most moments with reasonable accuracy. In the simulated networks,

treated students are, on average, more central than control students according to all centrality measures.

They are also more likely to be in the top 5 percent of the distribution. The model closely predicts the

probability that a treatment student will appear among the top 5 percent of students according to all

network centrality measures. In both the model and the empirics, this change in centrality appears to be

driven by an increase in centrality over time for treated students. For most measures, there is very little

difference between the baseline average and the endline control group average. It also closely predicts a

strong correlation between centrality at baseline and endline. Indeed, in both simulations and empirics,

nearly half those who were most-central at baseline remain most-central at endline. The match between

the model and the data is particularly strong for measures of diffusion centrality, which might be therefore

particularly relevant for counterfactual experiments involving network-based targeting and information

diffusion.

We can also use these simulations to shed light on the likely magnitude of average treatment effects on

centrality outcomes, as we are able to simulate not only treated networks but also counterfactual untreated

networks. In Panel C of Table 9, we compare the simulated average treatment effects to our reduced-form

estimates. Strictly speaking, our reduced-form estimates should be interpreted as relative differences

between treated and control students and not average treatment effects. Yet, the simulations suggest

that the average treatment effects and the reduced-form relative differences in centrality are remarkably

similar. The simulated average treatment effects are slightly larger for most measures. For example, using

the model simulation, we estimate that treated students have approximately 1.02 more links overall than

they would have had under no intervention (compared to the reduced-form estimate of 0.964 taken from

Panel A of Table 8).

5.4 Counterfactual Policy Simulations

We next simulate sets of networks to conduct counterfactual policy experiments. We compare network-

based targeting strategies to random targeting, and we vary the diffusion model and its parameters, as

well as the measure of diffusion. We plot the estimates against a benchmark that assumes stable networks

over time.
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Diffusion models. First, we will examine a variant of the standard Susceptible-Infected-Recovered (SIR)

diffusion model. In this model, each treated node shares information with each of its neighbors, indepen-

dently, with probability q. This process continues for T periods, with all treated and previously informed

nodes sharing information in each time period. and then diffusion stops.

Under the SIR model, we will measure the extent of information diffusion in two different ways:

the number of nodes in the network that are ever informed, and total diffusion, which is equal to the

expected total number of times that information is heard. While the number of ever-informed nodes is

a natural definition of information diffusion, total diffusion may also be relevant in our setting, where

many different pieces of information are shared, and where credence may increase in the number of times

a piece of information is heard. Total diffusion can exceed the size of the network, but this does not

necessarily imply that everyone has been informed. This measure is also closed related to the concept of

diffusion centrality; total diffusion is obtained by simply taking the sum of the diffusion centralities of

treated nodes, and diffusion-centrality targeting maximizes expected total diffusion (Banerjee et al., 2019).

Second, following Beaman et al. (2021), we will consider a model in which a node becomes informed

when at least two of its neighbors are informed. The process is again repeated for T periods. This is a

“threshold model” of diffusion, with threshold λ = 2 (Granovetter, 1978).

Targeting strategies. One common form of network-based targeting involves targeting central nodes. We

will target nodes based on diffusion centrality, with parameters matching the parameters of the model.

This targeting strategy maximizes expected total diffusion under the SIR model Banerjee et al. (2019). It

does not necessarily maximize the expected number of ever-informed nodes nor the number of informed

nodes under the threshold model (Jackson and Storms, 2023). Diffusion centrality also has the advantage

of being relatively easy to measure in the field. In the case where T = 1, it is equivalent to degree, and

Banerjee et al. (2019) show that members of a community may be able to quickly identify diffusion-central

nodes. In the appendix, we will show the results of simulations using degree and eigenvector centrality

for targeting.

In general, choosing an optimal targeting strategy based on a particular network’s structure is com-

putationally intractable (Kempe et al., 2003). Yet, for a very small number of seeds, it is computationally

feasible to identify the precise nodes that would maximize information diffusion. This requires a de-

terministic model of diffusion, such as the threshold model or the SIR model with q = 1, and a stable

network. In their study of the diffusion of agricultural technology, Beaman et al. (2021) use network data

to identify two top seeds based on a threshold model of diffusion. We will use our baseline network data

to perform a similar computation, identifying the top two seeds under both the threshold model and the

SIR model with q = 1.
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Simulations. For each model, and each set of parameters, we simulate 1000 networks with 100 nodes.

Under network-based targeting, we assign the top NT nodes to treatment based on their positions in the

baseline network.

In Figures 8, 9 and 10 we plot the extent of information diffusion as simulated under different models

and measures of diffusion. In each panel of each figure, we plot information diffusion under centrality-

based targeting (in red) versus random targeting (in blue).25 We consider three different hypothetical

settings with respect to network structure. First, we plot information diffusion on networks that change

over time, both due to exogenous link changes and endogenous link formation, as estimated in our empir-

ical setting (solid lines). Second, we plot information diffusion in a hypothetical setting where networks

remain stable over time (dashed lines). Third, we compare these plots to a hypothetical setting where

networks change exogenously over time, but not endogenously in response to the treatment (dotted line).

Note that we do not plot this third hypothetical for random targeting, as exogenous link changes do not

affect information diffusion under this policy.

In simulations that imitate the conditions of own experimental setting, we find that the gains from

centrality-based targeting are cut in half due to the face that the network changes over time. In Panels

A and B of Figure 8, we set the number of seeds to 20, and assume a single period of transmission

T = 1. These parameters were chosen to match our setting, where students appear to obtain information

primarily from treated students directly, as opposed to through longer chains of diffusion (see Sections

2.2 and 5.1). For the SIR model, across the full range of q ∈ (0, 1), we find that the gains from centrality-

based targeting are reduced by 44-56 percent in terms of the number of nodes ever informed, and by

48-49 percent in terms of total diffusion. For the threshold model (with λ = 2), the gains from centrality-

based targeting are reduced by 53 percent. In Panels C and D, we simulate a model with more time

periods (T = 4) and only 2 seeds. Here, we see that when transmission rates are low, it is important to

target central nodes to reach as many other nodes as possible (Panel C). As q increases, this becomes less

important, and random seeding catches up. Again, even for low values of q, the gains from centrality-

based targeting are limited due to the changing network.

The gap in information diffusion decreases under endogenous network change for two reasons. First,

networks change over time, independent of the information intervention. These exogenous changes, on

their own, reduces the gains from network-based targeting. Second, there is a treatment effect: the infor-

mation intervention increases the centrality of treated nodes. This increases information diffusion under

both targeting strategies, but not necessarily by the same amount. Indeed, we see that under centrality-

based targeting, total information diffusion would be lower if the network were to change exogenously

but not in response to the information treatment. Under random targeting, total information diffusion is

not affected by exogenous network change, but increases under endogenous network response.

In Figure 9 and in Figure 10, we also plot information diffusion by number of seeds, under the SIR

25Using a different centrality measure for targeting does not perceptibly alter the simulations (see Appendix Figures A5, A6, A7,
and A8).
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model and threshold model respectively. For the SIR model, we use two different sets of paramaters. In

Panels A and B of Figure 9, we simply set q = 1 and T = 1, that is, each treated node shares information

with all of their neighbours, and then diffusion stops. In Panels E and F, we set q∗ = 0.1 and T∗ = 4,

to equal the reciprocal of the top eigenvalue and diameter of the graph respectively, as in Banerjee et al.

(2019). Panels A and C plot the total number of nodes ever informed, while Panels B and D plot total

diffusion, that is, the number of times the information is heard. For the threshold model (Figure 10), we

use λ = 2 as in Beaman et al. (2021), and two different values for the number of periods: T = 1 and T = 4

(as in Beaman et al. 2021).

One way of measuring the gains from network-based targeting is to count the number of random

seeds that one would need to add in order to achieve the same level of diffusion. In Figures 9 and 10, the

number of random seeds one would need to add to match centrality-based targeting can be measured by

comparing the horizontal distance between the solid red and blue lines (or, under a stable network, the

dashed red and blue lines).

One initial takeaway from Figures 9 and 10 is that, in general, the gains from centrality-based targeting

are limited, even on stable networks. Consider the SIR model with q = T = 1. Assuming a stable network

with ten seeds, the number of random seeds one would need to add to match network-based targeting is

only 6. This is consistent with theoretical work by Akbarpour et al. (2021), who show that for SIR models,

you typically only need to add a few random seeds in order to achieve the same level of diffusion as

under centrality-based targeting. For a large number of seeds, random targeting outperforms centrality-

based targeting, even on a stable network, as central nodes may inform overlapping sets of well-connected

neighbours. (Panel E of 9).

The gains from centrality-based targeting are reduced by more than half due to the network change.

Taking the network change into account, the number of additional random seeds that would be needed to

match the level of total diffusion under centrality-based targeting is cut in half: at most 4 seeds under the

SIR model (or 5 for total diffusion).

It is worth noting that while targeting nodes based on standard centrality measures is often feasible

(Banerjee et al., 2019), and can be optimal for total diffusion under the SIR model, it may be far from

optimal for the threshold model (Jackson and Storms, 2023). Indeed, for information to spread under the

threshold model, it is important to choose seeds with neighbours in common. While this may be more

likely for central nodes, it is possible to choose even better seeds based on precise network data.

In Figure 11, we present results from simulations in which we choose only two seeds, but the two

seeds are chosen precisely for maximum diffusion, based on a stable baseline network and a deterministic

diffusion process. In the case of total diffusion under the SIR model, this is equivalent to choosing seeds

based on diffusion centrality, as in Figure 9. However, it is theoretically possible to choose even better

seeds to maximize the number of ever-informed nodes, or to maximize diffusion under the threshold

model, as in Beaman et al. (2021).
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Consistent with Akbarpour et al. (2021) and Jackson and Storms (2023), we find that under a threshold

model, precise targeting vastly outperforms other targeting strategies on a stable network (Figure 11).

Precise targeting outperforms centrality-based targeting, and is 3 to 7 times more effective than random

targeting.

This advantage shrinks or disappears once the network response is taken into account (Figure 11).

Precise targeting relies on specific links remaining intact, and is very sensitive to changes in the network.

The gains from precise targeting, relative to random targeting, are reduced by one-half to two-thirds across

the range of T ∈ {1, 2, 3, 4}. Centrality-based targeting appears more robust, and in fact leads to higher

information diffusion across both models. A big part of the reduction in gains is likely due to the fact that

links change exogenously. That is, two nodes that initially share a neighbor may lose that shared neighbor

due simply to the fact that links form and break over time. Indeed, this may explain why Beaman et al.

(2021) find that even when using baseline network data to target optimal seeds, the true diffusion of

technology over the long run is lower than predicted by their threshold model simulations.

Despite the changing network, targeting based on baseline centrality remains an effective strategy for

information diffusion. If one could predict the endline network perfectly, targeting nodes with high end-

line diffusion centrality would maximize total information diffusion. Our model is not deterministic and

therefore does not allow us to make such a prediction, as links form at random. In our data, baseline cen-

trality is a strong predictor of endline centrality, and is a better predictor than other baseline covariates.

Appendix Table A9 shows that baseline diffusion centrality is a stronger predictor of endline diffusion

centrality than baseline academic ability, SES or gender. Moreover, targeting nodes with high centrality

at baseline appears to outperform both random targeting and more precise targeting strategies, and also

outperforms targeting by ability (see Appendix Figure A9). In practice, there is a tradeoff between target-

ing central nodes and adding seeds, and this tradeoff is made sharper by the fact that networks respond

to intervention.

5.5 Information Diffusion and Academic Performance

Previous work analyzing data from the same experiment has shown that Wikipedia access had a direct

impact on students’ English and Biology scores (Derksen et al., 2022). These two particular exam scores

are pre-registered as primary outcomes, as almost all students complete the exams. English is compulsory

for graduation, and Biology is the most popular subject, as it is required for entry into the most popular

post-secondary programs including nursing and other medical programs. Students in the treated group

had significantly higher scores than those in the control group, with effects concentrated among students

with below-median scores at baseline (Appendix Table A10). For this subgroup, treated students scored

0.2 standard deviations higher in English, and 0.14 standard deviations higher in Biology, compared to

below-median students in the control group. There was no significant effect for students with above-above

median scores at baseline, for whom point estimates are zero or negative.
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Reduced-form analysis cannot, however, identify the total effect of the intervention nor the extent of

spillovers. First, we do not have any pure control schools, so we cannot directly estimate effects relative to

a counterfactual in which no student was treated. Second, attempts to estimate spillovers using baseline

network data will be biased due to the endogenous network response, and will likely understate their

importance.

In this section, we calibrate our model to explore how the intervention affected students both directly

and indirectly due to information diffusion, and to characterize the total effect of the intervention. In

our setting, access to information may affect a student’s academic performance and potentially even later

life outcomes. As information diffuses through the network, academic outcomes for non-treated students

might also be affected, and the effect on treated students might be amplified.

We model a student’s academic score yi as follows.

yi = si + τ(ai)Ti + τ(ai) ∑
j:g1

ij=1

TjQij (8)

Here, si is the student’s counterfactual score, if the intervention had not taken place in their school.

Ti represents treatment status. τ is the effect of becoming informed, which varies by the student’s ability

ai ∈ [0, 1]. Qij are independent Bernoulli random variables with identical probability parameters q, each

indicating information transmission between a particular pair of nodes.

In this model, academic scores depend on total information diffusion under an SIR process with one

time period, and probability of information transmission q.26 Here, by measuring total diffusion, we

assume that students receive a direct effect τ each time they become informed. This measure is particu-

larly relevant to our setting, where students receive different information from different peers. This also

captures the fact that even treated nodes may benefit from links to other treated nodes, in line with our

empirical findings.

We can again calibrate this model by matching moments to empirical moments in our data (see Ap-

pendix A.4 for details). To match moments, we will make use of final exam scores in both the year prior

to and the year of the intervention. We did not collect form 4 exam scores for the year before the inter-

vention, as this cohort did not include our study participants. We therefore restrict our dataset to include

only form 2 and 3 exam scores. We again define yi to be the average of the student’s English and Biology

scores. We normalize with respect to the distribution of grades from the previous year’s cohort, within

the same school and form, by subtracting the mean and dividing by the standard deviation.27

Our measure of student ability is, as above, their percentile in the year prior to the intervention. Then,

we can map ability ai to ability type θi as follows.

26Again, we assume T = 1 not only for simplicity, but also because control students report obtaining information primarily from
treated students directly, and do not appear to form new links amongst themselves (see Sections 2.2 and 5.1).

27This normalization differs from that in Derksen et al. (2022), because for the purposes of this exercise we need to capture changes
in both the control and treatment arms, relative to a fixed benchmark.
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θi =

θH if ai >= 0.9,

θL if ai < 0.9.

Abusing notation to write τ(θi) = E(τ(ai)|θi), we obtain the following parameter estimates.

q = 0.67 (9)

τ(θH) = 0.05 (10)

τ(θL) = 0.11 (11)

This exercise sheds some light on the likely magnitudes of the direct effects, spillovers, and total

effect of the intervention. Taking a weighted average of τ(θH) and τ(θL), we obtain an average direct

treatment effect of τ = 0.10. These direct effects are not very different from the estimates we obtain by

simply comparing treatment and control students at endline, as in equation 19 (Appendix A.4). However,

this exercise does suggest that the total effect of the intervention, including spillovers, is larger. Indeed,

equation 21 (Appendix A.4) indicates that control group students’ end-of-year scores are 0.26 standard

deviations higher than those of the previous cohort. The total effect of the intervention, based on the

average score overall in the year of the intervention, could be as high as 0.29 standard deviations. This

conclusion rests on the assumption that the previous year’s cohort, in the same form, is a good comparison

group for the cohort that received the intervention. Reassuringly, there does not appear to be significant

grade inflation between the two cohorts: the average grade in Chichewa, a subject that should not be

impacted by Wikipedia, is unchanged.

5.6 Inequality and Academic Welfare

Finally, we can use the estimates from Section 5.5 to the explore implications of network-based targeting

for inequality and academic welfare. In our setting, targeting central nodes could affect academic wel-

fare through two direct channels. First, central students are more likely to be high-ability students. By

targeting them, we would provide a direct benefit to students who are already advantaged. Even the

indirect benefits may accrue primarily to high-ability students, due to network homophily. Second, the

intervention appears to have a larger average treatment effect on lower-ability students, as shown in the

previous subsection and in (Derksen et al., 2022). By targeting high-ability students, we therefore would

expect smaller direct effects overall. The fact that network-based targeting increases information diffu-

sion has the potential to offset both of these considerations, as lower-ability students who are not treated

nevertheless benefit indirectly.

In general, network-based targeting carries implications for inequality, as centrality is correlated with
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other forms of privilege in many settings (Jackson, 2019). In our model, this privilege applies to the top

decile of nodes according to ability-type θ, and we allow link formation to depend on type. In our setting,

θ corresponds to academic ability, but θ could theoretically represent any source of privilege that is corre-

lated with network centrality. In our data, when targeting students at random, we expect approximately

10 percent of targets to belong to the privileged group. This is much higher when targeting by baseline

centrality. For example, if we select the top 10 percent of nodes by degree centrality, approximately half

will be in the high-ability group (see Appendix Figure A10).

To explore the implications of this imbalance in targeting for academic welfare, we simulate expected

total treatment effects at the node level. Here, we define the total treatment effect for student i to be the effect

on their exam score relative to (and normalized with respect to) a counterfactual in which the intervention

did not take place. Importantly, control students may have non-zero total treatment effects.

E(yi − si) = τ(θi)Ti + qτ(θi) ∑
j:g1

ij=1

Tj

=


0.05Ti + 0.67 ∗ 0.05 ∑j:g1

ij=1 Tj if θi = θH ,

0.11Ti + 0.67 ∗ 0.11 ∑j:g1
ij=1 Tj if θi = θL.

In Figure 12, we plot total treatment effects under network-based targeting (in red) versus random

targeting (in blue), again simulating 1000 100-node networks under each set of parameters. We target

nodes with top diffusion centralities; because T = 1 this is equivalent to degree-centrality targeting. We

again consider networks that change over time (solid lines), hypothetical networks that remain stable over

time (dashed lines), and hypothetical networks that change exogenously but not endogenously in response

to the treatment (dotted line).

Network-based targeting increases academic welfare, as captured by average total treatment effects,

with any number of seeds, though the endogenous network response lessens this increase considerably

(Panel A of Figure 12). The number of additional random seeds needed to match the effect achieved

under network-based targeting is at most 5, compared to 12 under stable networks. The fact that network-

based targeting continues to outperform random targeting despite larger direct treatment effects for lower-

ability students is due to the fact that spillovers are large in our context. That is, many students benefit

indirectly even if treated students are primarily high-ability. Our estimate of q = 0.67 relies heavily on

the assumption that the previous year’s cohort serves as a good counterfactual, yet, even with smaller

values of q network-based targeting dominates (Panel B). Random targeting appears to only outperform

network-based targeting in networks where information transmission is rare (q ≤ 0.15).

However, the gains from network-based targeting are attributed disproportionately to high-ability stu-

dents, and therefore lead to a relatively wider achievement gap (Panels C and D of Figure 12). With 20
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seeds, the average total treatment effect for high-ability students jumps from 0.09 standard deviations

under random targeting to 0.14 under network-based targeting. This jump is much smaller for lower-

ability students, whose total treatment effects are large under both random (0.17 standard deviations) and

network-based targeting (0.19 standard deviations). The intervention narrows the achievement gap under

both targeting strategies, but this effect is much stronger under random targeting (Panels C and D, solid

lines).

6 Conclusion

This paper demonstrates that providing exclusive, long-term access to a high quality information source

can causally affect networks, as nodes form strategic links to informed peers to gain access. We conducted

a randomized trial in Malawian secondary schools, and provided a small subset of students with exclu-

sive access to online information. Over the course of the school year, this caused students to form new

information-sharing links, which led to a signficant difference in network centrality between treated and

control students. After eight months, treated students were more likely than control students to be among

the highest centrality students, according to many different measures. By calibrating models of network

formation and information diffusion, we show that this has important implications for network-based

targeting and academic performance.

By randomizing at the individual level, we are able to examine how node-level changes in information

access causally affect strategic link formation and relative network positions. Yet, we cannot directly

measure average treatment effects in absolute terms as we do not observe any pure control networks. This

is a sample size limitation: with data from many more schools, we would have been able to compare

students not only within but across clusters with varying treatment intensity. Instead, we must interpret

our reduced-form estimates as relative differences, between treated and control students, caused by the

intervention. To shed light on absolute treatment effects, we rely on estimates from a calibrated model.

The impact of information access on network structure is likely to vary based on the benefits and costs

of interaction, for both treated and control students. The benefits of forming new links likely depend on

the nature, scale, usefulness and importance of the information provided, the degree of exclusivity, the

duration of access, and the level of trust in the community. Benefits to the treated students specifically

might depend on whether information sharing is enjoyable, or whether they are able to gain status or other

forms of favor by sharing information. The costs of interaction likely depend on whether a community is

geographically and socially well-connected, and whether norms allow for communication with a diverse

set of peers. We may expect the network response to be larger in a setting where the information provided

is highly instrumental, such as agricultural information, as opposed to a mix of instrumental, general

knowledge and entertainment. We may also expect smaller effects in settings where existing information-

sharing networks are rigidly determined by norms. Yet, the networks we observe appear comparable to
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networks captured in other real world settings, and interactions between students likely include many of

the dynamics present in any close-knit community.

Because our reduced-form results suggest a straightforward interpretation, we chose to specify a sim-

ple and transparent model. The model abstracts from many potential determinants of network formation,

such as student characteristics and classroom structure, to focus on the role of information access and un-

derlying advantage. We also assume only first-order information transmission, that is, that students cannot

obtain information second-hand from a treated student. This allows us to describe a simple equilibrium

network, but may not deliver some of nuanced predictions a richer theoretical model would provide. We

rely on this model to characterize the average treatment effect of the intervention on network centrality

relative to a no-intervention counterfactual; we cannot estimate these average treatment effects directly

without a pure control arm.

This study has implications for policies that target an intervention to participants based on their net-

work positions. Information interventions, especially when implemented at scale and over the longer

term, can make initially ordinary members of a social network central and influential. Expensive network

mapping exercises undertaken with the goal of targeting influential people may therefore be an inefficient

and suboptimal use of resources. Moreover, centrality-based targeting can amplify existing inequalities,

as influence is typically correlated with privilege. To maximize aggregate welfare and limit inequality,

policymakers should consider not only diffusion but also the direct impact of the intervention, and its

potential to close outcome gaps.

Our findings also highlight the potential pitfalls of using network data to estimate spillovers. Networks

can change over time, both exogenously and in response to an experiment. Standard specifications may

produce biased spillover estimates. For example, estimates may be biased towards zero if spillovers occur

along links that form in response to the intervention itself.

Information access is a natural source of advantage in a social network. Yet, other resources likely also

impact network position. Moreover, information likely has a different effect on network structure when

provided at the network-level rather than to individual nodes. If network formation is purely strategic, we

would expect our effects to fade after the end of the intervention. Whether endogenous network changes

persist is an open empirical question. Developing a broader understanding of the determinants of social

network position and overall network structure is an important direction for future work.
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Figures and Tables

Figure 1: Hours Spent Browsing Wikipedia by Topic and School Subject

Panel A: Topic popularity Panel B: Subject popularity
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Notes: Figure reproduced from Derksen et al. (2022). Panel A: Browsing hours per topic, per student, aggregated over one
academic year. The topics Business, Concepts, Crime, Economy, Education, Energy, Government, Humanities, Knowledge,
Law, Objects, Organizations, Politics, Science, and Universe are excluded from the figure and are less than 0.12 hours. Panel
B: Browsing hours per school subject, per student, aggregated over one academic year. See Derksen et al. (2022) for details
on topic classification.

44



Figure 2: Wikipedia Browsing for News about World Events in 2017-18

Panel A: All events Panel B: Events in Africa Panel C: Events not in Africa
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Notes: Figure reproduced from Derksen et al. (2022). Panel A: Left axis (solid line) shows total average browsing minutes per student
on pages related to full set of worldwide events. Right axis (dashed line) shows share of students that visited pages associated to at
least one event. Panels B and C: Left axis (solid line) shows average number of minutes per student and event. Right axis (dashed line)
shows average share of students that visited pages associated to a single event. All events from November 2nd 2017 to May 9th 2018
as reported in https://en.wikipedia.org/wiki/2017 and https://en.wikipedia.org/wiki/2018 are included, with the 20 weeks
before and after they occurred. See Derksen et al. (2022) for details on classification of news events. Week of the event is set at zero.
Negative (positive) numbers on the x-axis are weeks before (after) the event.

Figure 3: Information Sources for Correct Quiz Answers

Panel A: News quiz
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Notes: Percent of students that found correct answers to their unique quiz questions, overall and by information
source. Among control students who received correct news quiz answers from friends, 97% were in the treatment
group.
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Figure 4: Networks at a Single School

Panel A: Information links
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Notes: Baseline network adjacency matrices for a single school, including links across forms. Nodes are ordered by form and classroom.
A dot represents an undirected link between nodes. On the horizontal axis, blue nodes are treated and red nodes are control. Panel A:
Information links. Panel B: Personal friendship links.
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Figure 5: Centrality in the Information Network

Panel A: Degree Panel B: Degree at endline
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Figure 6: The Model of Link Formation
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Notes: Pairwise-stable equilibria for link formation. The (relative) area of the shaded rectangle represents the
probability of forming a link.

Figure 7: Model Simulations
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Notes: Simulated average centrality measures based on the model in Section 5.1. Diffusion centrality parameters are set equal to the
reciprocal of the top eigenvalue and diameter of the graph respectively, as in Banerjee et al. (2019). Left: PTC varies while other
parameters are fixed with PCC = PTT = .10. Right: PTT varies while other parameters are fixed with PCC = .10 and PTC = .11. 1000
simulated networks for each set of parameters. Each network has N = 100 with 20 treated nodes.
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Figure 8: SIR Model, Centrality-Based Versus Random Targeting

Panel A: Ever informed, 20 seeds and T = 1 Panel B: Total Diffusion, 20 seeds and T = 1

20

40

60

80

0.00 0.25 0.50 0.75 1.00
Transmission probability (q)

N
um

be
r 

ev
er

 in
fo

rm
ed

Targeting
Centrality−based
Centrality−based, stable network
Centrality−based, without treatment effect
Random
Random, stable network

100

200

0.00 0.25 0.50 0.75 1.00
Transmission probability (q)

To
ta

l d
iff

us
io

n

Targeting
Centrality−based
Centrality−based, stable network
Centrality−based, without treatment effect
Random
Random, stable network

Panel C: Ever informed, 2 seeds and T = 4 Panel D: Total diffusion, 2 seeds and T = 4
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Notes: Simulations of 100-node networks, with 1000 replications for each set of parameter values. Network-based targeting involves
targeting the top nodes by diffusion centrality, with parameters q and T matching the parameters of the SIR diffusion model.
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Figure 9: SIR Model, Centrality-Based Versus Random Targeting

Panel A: Ever informed (q = 1, T = 1) Panel B: Total diffusion (q = 1, T = 1)
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Panel C: Ever informed (q = 0.1, T = 4) Panel D: Total diffusion (q = 0.1, T = 4)
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Notes: Simulations of 100-node networks, with 1000 replications for each set of parameter values. Network-based targeting involves
targeting the top nodes by diffusion centrality, with parameters q and T matching the parameters of the SIR diffusion model. In Panels
C and D, q∗ = 0.1 and T∗ = 4 are set to equal the reciprocal of the top eigenvalue and diameter of the graph respectively, as in Banerjee
et al. (2019).
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Figure 10: Threshold Model, Centrality-Based Versus Random Targeting

Panel A: Number informed (λ = 2, T = 1) Panel B: Number informed (λ = 2, T = 4)
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Notes: Simulations of 100-node networks, with 1000 replications for each set of parameter values. Network-based targeting involves
targeting the top nodes by diffusion centrality, with parameters q = 1 and T matching the parameter of the diffusion model.

Figure 11: Centrality-Based Targeting Versus Precise Targeting (2 seeds)

Panel A: SIR model, ever informed (q = 1) Panel B: Threshold model (λ = 2)
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Notes: Simulations of 100-node networks, with 1000 replications for each set of parameter values. Optimal targeting involves targeting
the two nodes that maximize diffusion on the baseline network. Network-based targeting involves targeting the top nodes by diffusion
centrality, with parameters q = 1 and T matching the parameter of the diffusion model.
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Figure 12: Simulated Total Treatment Effects on Academic Performance

Panel A: Average effect by number of seeds Panel B: Average effect by q
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Notes: Simulations of 100-node networks, with 1000 replications for each set of parameter values. Network-based targeting involves
targeting the top nodes by diffusion centrality with T = 1, which is equivalent to targeting by degree.
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Table 1: Survey Measures of Network Links

Information Network

Who do you talk to about movies, music, sports and entertainment?

Who do you ask for information that might be useful when researching a topic learned in class?

Who do you ask for information about the news?

Who do you ask for information about health?

Who do you ask for information about school activities?

Personal Friendship Network

Who is your best friend at school?

Who have you borrowed money from at this school?

Who have you borrowed things from at this school?

Who have you given a gift to at this school?

Who do you talk to about personal topics or ask for advice?

Notes: The same survey measures were collected at baseline and endline from the full sample.
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Table 2: Balance Table and Attrition

Control (N=1207) Treatment (N=301)

Mean SD Mean SD Difference p-value

Panel A. Information Network

Degree 10.792 6.391 10.764 6.497 -0.028 0.947
Eigenvector centrality 0.275 0.178 0.274 0.177 -0.000 0.972
Number of length-2 walks 167.781 108.081 169.880 113.573 2.099 0.772
Diffusion 3.481 2.026 3.416 1.901 -0.065 0.599
Betweenness 0.011 0.019 0.011 0.013 -0.000 0.743
Treated links 2.124 1.806 2.246 1.867 0.122 0.310
Average link strength 0.307 0.088 0.307 0.096 0.000 0.959
Has treated links 0.842 0.365 0.857 0.351 0.015 0.500

Panel B. Personal Network

Degree 6.418 3.373 6.502 3.471 0.083 0.708
Eigenvector centrality 0.274 0.213 0.271 0.214 -0.003 0.828
Number of length-2 walks 59.203 36.364 59.900 37.874 0.697 0.773
Diffusion 4.306 2.798 4.225 2.726 -0.080 0.649
Betweenness 0.016 0.019 0.016 0.016 -0.001 0.608
Treated links 1.312 1.224 1.243 1.213 -0.069 0.379
Average link strength 0.337 0.097 0.340 0.110 0.003 0.699
Has treated links 0.734 0.442 0.694 0.461 -0.040 0.179

Panel C. Full Network

Degree 13.452 6.973 13.528 7.236 0.077 0.868
Eigenvector centrality 0.322 0.182 0.323 0.184 0.001 0.941
Number of length-2 walks 243.304 143.087 247.429 151.069 4.125 0.669
Diffusion 3.536 1.826 3.487 1.742 -0.049 0.667
Betweenness centrality 0.010 0.015 0.010 0.011 -0.000 0.786
Treated links 2.678 1.999 2.791 2.113 0.113 0.402
Average link strength 0.206 0.064 0.206 0.066 0.001 0.891
Has treated links 0.900 0.300 0.894 0.309 -0.006 0.759
Attrition 0.076 0.265 0.047 0.211 -0.030 0.039

Notes: Baseline balance between treatment (N=301) and control students (N=1207) across the node-level centrality measures, on the entire baseline
sample (including those who are absent from the endline network). “SD” stands for standard deviation. “Difference” is the difference of means between
control and treatment. p-value tests the null hypothesis that the difference in means of control and treatment are equal to zero. Attrition is included in
the last row of Panel C (Full Network).
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Table 3: Correlates of Centrality at Baseline

Degree Eigenvector
Centrality

Diffusion
Centrality

Top 5%
Degree

Top 5%
Eigenvector
Centrality

Top 5%
Diffusion
Centrality

Panel A. Information Network

Academic Ability 2.43∗∗∗ 0.400∗∗∗ 0.427∗∗∗ 0.053∗∗∗ 0.043∗∗∗ 0.051∗∗∗

(0.293) (0.051) (0.052) (0.013) (0.012) (0.012)
SES 1.33∗∗∗ 0.354∗∗∗ 0.321∗∗∗ 0.028∗∗ 0.031∗∗ 0.033∗∗

(0.310) (0.056) (0.056) (0.014) (0.013) (0.013)
Male -1.40∗∗∗ -0.511∗∗∗ -0.404∗∗∗ -0.017 -0.042∗∗ -0.027

(0.456) (0.081) (0.082) (0.020) (0.019) (0.019)

Observations 1,402 1,402 1,402 1,402 1,402 1,402
R2 0.1684 0.0862 0.0765 0.0154 0.0163 0.0181

Panel B. Personal Network

Academic Ability 1.08∗∗∗ 0.295∗∗∗ 0.334∗∗∗ 0.055∗∗∗ 0.038∗∗∗ 0.038∗∗∗

(0.159) (0.051) (0.052) (0.014) (0.012) (0.012)
SES 0.649∗∗∗ 0.282∗∗∗ 0.261∗∗∗ 0.029∗∗ 0.043∗∗∗ 0.036∗∗∗

(0.169) (0.054) (0.056) (0.015) (0.012) (0.013)
Male -1.59∗∗∗ -1.02∗∗∗ -0.814∗∗∗ -0.046∗∗ -0.101∗∗∗ -0.082∗∗∗

(0.256) (0.079) (0.081) (0.023) (0.022) (0.021)

Observations 1,402 1,402 1,402 1,402 1,402 1,402
R2 0.1792 0.1409 0.1038 0.0225 0.0364 0.0257

Panel C. Full Network

Academic Ability 2.54∗∗∗ 0.390∗∗∗ 0.417∗∗∗ 0.047∗∗∗ 0.053∗∗∗ 0.050∗∗∗

(0.316) (0.052) (0.052) (0.013) (0.012) (0.012)
SES 1.33∗∗∗ 0.310∗∗∗ 0.284∗∗∗ 0.015 0.024∗ 0.023∗

(0.334) (0.055) (0.055) (0.013) (0.013) (0.013)
Male -2.02∗∗∗ -0.577∗∗∗ -0.480∗∗∗ -0.026 -0.059∗∗∗ -0.044∗∗

(0.494) (0.081) (0.082) (0.021) (0.020) (0.020)

Observations 1,402 1,402 1,402 1,402 1,402 1,402
R2 0.1996 0.0852 0.0763 0.0133 0.0220 0.0177

Notes: Regressions of degree, eigenvector centrality, diffusion centrality, top 5% degree and top 5% eigenvector centrality and top 5%
diffusion centrality on academic ability, high SES (SES), and male (estimating a single regression for each outcome). Eigenvector and
diffusion centralities are normalized with respect to the control arm mean and standard deviation. Diffusion centrality parameters follow
Banerjee et al. (2019) with q equal to the reciprocal of the top eigenvalue, and T equal to the diameter of the graph. Academic Ability is
defined as above-median exam score at baseline. SES is equal to 1 if respondent’s house has electricity and running water. The sample
consists of students present at both baseline and endline (N=1,402). Heteroskedasticity-robust standard errors in parentheses. *** p<0.01; **
p<0.05; * p<0.1.
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Table 4: Dyadic Regressions

Information Full Personal

Panel A. Undirected links

Treat-Control Link 0.735∗∗∗ 0.694∗∗∗ 0.065
(0.198) (0.217) (0.155)

p = 0.005 p = 0.018 p = 0.710
Treat-Treat Link 1.49∗∗∗ 1.02∗ -0.335

(0.497) (0.530) (0.355)
p = 0.011 p = 0.121 p = 0.409

R2 0.1339 0.1152 0.1541
Observations 82,711 82,711 82,711

Panel B. Directed links

Treat-to-Control Link 0.344∗∗ 0.259 -0.070
(0.140) (0.158) (0.111)

p = 0.053 p = 0.232 p = 0.567
Control-to-Treat Link 0.646∗∗∗ 0.609∗∗∗ 0.124

(0.145) (0.163) (0.115)
p = 0.004 p = 0.010 p = 0.341

Treat-to-Treat Link 1.00∗∗∗ 0.691∗∗ -0.255
(0.279) (0.306) (0.202)

p = 0.004 p = 0.084 p = 0.308

R2 0.0987 0.1231 0.0969
Observations 165,422 165,422 165,422

Notes: Dyadic regressions (equation 1). Unit of observation is a pair of students in the same
form and school, i and j. Panel A: The outcome is coded as 100 if either student named the
other as a contact and 0 otherwise. “Treat-Control” is a dummy equal to 1 if i is treated and
j is control, or vice-versa. “Treat-Treat” is a dummy equal to one if both i and j are in the
treatment group. Panel B: The outcome is coded as 100 if i named j as a contact and 0 otherwise.
“Treat-to-Control” is a dummy equal to 1 if i is treated and j is control, and other covariates are
defined similarly. Column “Information” refers to information network, followed by the personal
and full networks. Specifications have baseline link, same-class and same-gender controls, and
include form fixed effects. The sample consists of students present at both baseline and endline.
Heteroskedasticity-robust standard errors in parentheses and randomization inference p-value
with “p = ”. Stars represent classical inference p-values with *** p<0.01; ** p<0.05; * p<0.1.
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Table 5: Link Formation by Baseline Internet Use

Undirected link at endline

Control, no internet - Treated, no internet 0.062
(0.387)

p = 0.896
Control, no internet - Treated, internet 0.909∗∗

(0.369)
p = 0.036

Control, internet - Treated, no internet 0.874∗∗

(0.365)
p = 0.064

Control, internet - Treated, internet 1.11∗∗∗

(0.391)
p = 0.023

Treated, no internet - Treated, no internet 2.41∗∗

(1.03)
p = 0.028

Treated, no internet - Treated, internet 2.15∗∗∗

(0.713)
p = 0.004

Treated, internet - Treated, internet -0.557
(0.919)

p = 0.616
No internet - internet -0.798∗∗∗

(0.288)
Internet - internet 0.626∗

(0.346)

R2 0.1345
Observations 82,711

Notes: Dyadic regressions (equation 1). Unit of observation is a pair of students in the same
form and school, i and j. The outcome is coded as 100 if there is a connection and 0 otherwise.
"Control, no internet - Treated, no internet" is equal to 1 if i is in the control group and had
no access to internet at the baseline and j is treated group and had no access to internet at the
baseline, or vice-versa. "Control, no internet - Treated, internet" is equal to 1 if i is in the control
group and had no access to internet at the baseline and j is treated group and had access to
internet at the baseline, or vice-versa. Remaining covariates are defined similarly. Specifications
have baseline link, same-class and same-gender controls, and include form fixed effects. The
sample consists of students present at both baseline and endline. Heteroskedasticity-robust
standard errors in parentheses and randomization inference p-value with "p = ". Stars represent
classical inference p-values with *** p<0.01; ** p<0.05; * p<0.1.

57



Table 6: Information Network Subcomponents

Entertain-
ment

Topic
learned in

class
News Health School

activities

Panel A. Undirected links

Treat-Control Link 0.287∗∗ 0.473∗∗∗ 0.466∗∗∗ 0.147 0.258∗∗

(0.131) (0.120) (0.111) (0.101) (0.120)
p = 0.045 p = 0.003 p = 0.000 p = 0.234 p = 0.069

Treat-Treat Link 0.688∗∗ 0.451 0.673∗∗ 0.211 0.661∗∗

(0.327) (0.294) (0.284) (0.246) (0.308)
p = 0.042 p = 0.207 p = 0.019 p = 0.454 p = 0.045

R2 0.0760 0.0984 0.0380 0.0393 0.0367
Observations 82,711 82,711 82,711 82,711 82,711

Panel B. Directed links

Treat-to-Control Link 0.158∗ 0.163∗∗ 0.184∗∗ 0.065 0.057
(0.090) (0.078) (0.073) (0.067) (0.079)

p = 0.083 p =0.017 p = 0.014 p = 0.336 p = 0.467
Control-to-Treat Link 0.227∗∗ 0.360∗∗∗ 0.365∗∗∗ 0.061 0.248∗∗∗

(0.092) (0.085) (0.078) (0.067) (0.083)
p = 0.042 p = 0.012 p = 0.000 p = 0.549 p = 0.035

Treat-to-Treat Link 0.393∗∗ 0.235 0.382∗∗∗ 0.140 0.289∗

(0.176) (0.153) (0.148) (0.130) (0.158)
p = 0.038 p =0.219 p = 0.014 p = 0.352 p = 0.105

R2 0.0522 0.0778 0.0219 0.0254 0.0216
Observations 165,422 165,422 165,422 165,422 165,422

Notes: Dyadic regressions (equation 1). Unit of observation is a pair of students in the same form and school, i and j. Panel A: The
outcome is coded as 100 if either student named the other as a contact and 0 otherwise. “Treat-Control” is a dummy equal to 1 if i is
treated and j is control, or vice-versa. “Treat-Treat” is a dummy equal to one if both i and j are in the treatment group. Panel B: The
outcome is coded as 100 if i named j as a contact and 0 otherwise. “Treat-to-Control” is a dummy equal to 1 if i is treated and j is
control, and other covariates are defined similarly. The “entertainment” subcomponent refers to the survey question “Who do you talk to
about movies, music, sports and entertainment?”. “Topic learned in class” refers to the question “Who do you ask for information that might be
useful when researching for a topic learned in class?”. News/health/school activities refers to the question “Who do you ask for information
about the news/health/school activities?” Specifications have baseline link, same-class and same-gender controls, and include form fixed
effects. The sample consists of students present at both baseline and endline. Heteroskedasticity-robust standard errors in parentheses
and randomization inference p-value with “p = ”. Stars represent classical inference p-values with *** p<0.01; ** p<0.05; * p<0.1.
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Table 7: Personal Network Subcomponents

Best friend Borrowed
money

Borrowed
things Gift

Personal
topics or
advice

Panel A. Undirected links

Treat-Control Link 0.068 0.006 0.024 -0.085 0.267∗∗∗

(0.069) (0.088) (0.104) (0.084) (0.100)
p = 0.240 p = 0.951 p = 0.847 p = 0.360 p = 0.007

Treat-Treat Link -0.182 -0.215 0.035 -0.131 -0.298
(0.150) (0.193) (0.249) (0.195) (0.220)

p = 0.218 p = 0.316 p = 0.901 p = 0.559 p = 0.203

R2 0.2127 0.0517 0.0304 0.0484 0.1339
Observations 82,711 82,711 82,711 82,711 82,711

Panel B. Directed links

Treat-to-Control Link 0.020 -0.047 0.028 -0.016 0.089
(0.050) (0.057) (0.069) (0.058) (0.071)

p = 0.544 p = 0.423 p = 0.752 p = 0.806 p = 0.155
Control-to-Treat Link 0.114∗∗ 0.114∗ 0.004 -0.071 0.221∗∗∗

(0.054) (0.062) (0.069) (0.056) (0.074)
p = 0.021 p = 0.082 p = 0.957 p = 0.300 p = 0.003

Treat-to-Treat Link -0.091 -0.099 0.010 -0.087 -0.117
(0.084) (0.101) (0.128) (0.103) (0.122)

p = 0.340 p = 0.399 p = 0.949 p = 0.502 p = 0.413

R2 0.1805 0.0344 0.0158 0.0344 0.1038
Observations 165,422 165,422 165,422 165,422 165,422

Notes: Dyadic regressions (equation 1). Unit of observation is a pair of students in the same form and school, i and j. Panel A: The
outcome is coded as 100 if either student named the other as a contact and 0 otherwise. “Treat-Control” is a dummy equal to 1 if i
is treated and j is control, or vice-versa. “Treat-Treat” is a dummy equal to one if both i and j are in the treatment group. Panel B:
The outcome is coded as 100 if i named j as a contact and 0 otherwise. “Treat-to-Control” is a dummy equal to 1 if i is treated and j
is control, and other covariates are defined similarly. “Best friend” refers to the survey question “Who is your best friend?”. “Borrowed
money/things” refers to the question “Who have you borrowed money/things from?”. “Gift” refers to the question “Who have you given a
gift to?”; the direction of this link is inverted for consistency of interpretation. “Personal topic or advice” refers to “Who do you talk to
about personal topics or ask for advice?” Specifications have baseline link, same-class and same-gender controls, and include form fixed
effects. The sample consists of students present at both baseline and endline. Heteroskedasticity-robust standard errors in parentheses
and randomization inference p-value with “p = ”. Stars represent classical inference p-values with *** p<0.01; ** p<0.05; * p<0.1.
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Table 8: Information Access and Centrality

Degree Eigenvector
Number of
Length-2

Walks
Diffusion Betweenness

Average
Link

Strength

Panel A. Information Network

Treatment 0.964∗∗∗ 0.183∗∗∗ 12.3∗∗∗ 0.187∗∗∗ 0.239∗∗ 0.007
(0.299) (0.065) (4.03) (0.065) (0.094) (0.004)

p = 0.000 p = 0.001 p = 0.001 p = 0.001 p = 0.001 p = 0.116

Control Mean 10.1 0.000 142.9 0.000 0.000 0.299
R2 0.510 0.414 0.630 0.414 0.367 0.187
Observations 1,402 1,402 1,402 1,402 1,402 1,402

Panel B. Information Network: top 5% by centrality

Treatment 0.023 0.024∗ 0.037∗∗ 0.033∗∗ 0.029∗∗ 0.006
(0.015) (0.015) (0.015) (0.015) (0.015) (0.015)

p = 0.086 p = 0.067 p = 0.004 p = 0.008 p = 0.023 p = 0.691

Control Mean 0.051 0.047 0.046 0.045 0.045 0.051
R2 0.309 0.230 0.249 0.273 0.283 0.061
Observations 1,402 1,402 1,402 1,402 1,402 1,402

Panel C. Personal Network

Treatment -0.011 -0.028 -0.378 -0.020 0.013 0.002
(0.169) (0.051) (1.42) (0.056) (0.065) (0.006)

p = 0.949 p = 0.620 p = 0.801 p = 0.721 p = 0.845 p = 0.738

Control Mean 5.91 0.000 49.9 0.000 0.000 0.325
R2 0.330 0.346 0.495 0.279 0.174 0.158
Observations 1,402 1,402 1,402 1,402 1,402 1,402

Panel D. Full Network

Treatment 0.822∗∗ 0.129∗∗ 12.3∗∗ 0.140∗∗ 0.204∗∗ 0.003
(0.320) (0.060) (5.28) (0.061) (0.080) (0.003)

p = 0.005 p = 0.017 p = 0.014 p = 0.011 p = 0.002 p = 0.406

Control Mean 12.9 0.000 218.3 0.000 0.000 0.193
R2 0.519 0.424 0.677 0.412 0.368 0.191
Observations 1,402 1,402 1,402 1,402 1,402 1,402

Notes: Panels A, C and D show the estimated differences between treated and control students for five measures of centrality (degree,
eigenvector, number of length-2 walks, diffusion, and betweenness centralities) and average link strength (equation 3) in the Information
Network, Personal Network and Full Network. Eigenvector, diffusion and betweenness centralities are normalized with respect to the
control arm mean and standard deviation. Diffusion centrality parameters follow Banerjee et al. (2019) with q equal to the reciprocal of
the top eigenvalue, and T equal to the diameter of the graph. Panel B shows the probability of being in the top 5% by centrality in the
Information Network within form. Regressions have controls for baseline measure of the outcome (and, in Panel B, baseline centrality
measure), gender, SES, stratification bins and class fixed effects. “Control Mean” represents the mean of the outcome in the control arm.
The sample consists of students present at both baseline and endline (N=1,402). Heteroskedasticity-robust standard errors in parentheses
and randomization inference p-value with “p = ”. Stars represent classical inference p-values with *** p<0.01; ** p<0.05; * p<0.1.
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Table 9: Model Calibration and Treatment Effect Simulation

Moment Simulated Empirical

Panel A. Average centrality

Degree (baseline) 9.79 10.1
Degree (control) 9.85 10.1
Degree (treatment) 10.7 10.9
Eigenvector centrality (baseline) 0.449 0.272
Eigenvector centrality (control) 0.447 0.324
Eigenvector centrality (treatment) 0.489 0.345
Number of length-2 walks (baseline) 117 148
Number of length-2 walks (control) 120 143
Number of length-2 walks (treatment) 130 153
Diffusion centrality (baseline) 3.54 3.5
Diffusion centrality (control) 3.49 3.55
Diffusion centrality (treatment) 3.8 3.76
Betweenness centrality (baseline) 0.0115 0.0123
Betweenness centrality (control) 0.011 0.0117
Betweenness centrality (treatment) 0.0129 0.0138

Panel B. Probability of being in top 5% by centrality

Top 5% by degree (treatment) 0.0917 0.0697
Top 5% by eigenvector centrality (treatment) 0.0741 0.0627
Top 5% by number of length-2 walks (treatment) 0.0754 0.0732
Top 5% by diffusion centrality (treatment) 0.0743 0.0697
Top 5% by betweenness centrality (treatment) 0.0738 0.0697

Panel C. Simulated average treatment effects and reduced-form estimates

Degree 1.02 0.964
Eigenvector centrality 0.0344 0.0277
Number of length-2 walks 15.8 12.3
Diffusion centrality 0.248 0.286
Betweenness centrality 0.00129 0.00245

Notes: Comparing moments from simulated endline networks to empirical moments. Excludes moments used for calibration. 10,000 117-node networks
simulated based on the model and calibration in Section 5.2. Empirical moments based on the information network. Centrality measures are not normalized.
Panel A: averages over simulated nodes and networks. Panel B: averages over simulated networks. Panel C: simulated average treatment effects against a
counterfactual untreated network, compared to the reduced-form estimates of difference in centrality between treated and control students at endline. These
reduced-form estimates are based on the specification in equation 3 (as in Table 8), but in this table the centrality measures are not normalized with respect to
the control arm.
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A Appendix

A.1 Randomization Inference for Dyadic Regressions

In Section 4.1, we estimate regressions of the following form:

100 × link1
ij = β0 + β1 · TCij + β2 · TTij + α · link0

ij + x′ijχ + ϵij (12)

where link1
ij = 1 if a link is formed between i and j at the endline, TCij = 1 if i is treated and j is control,

or vice-versa, TTij = 1 is i and j are treated, link0
ij = 1 if a link exists between i and j at the baseline, xij

is a set of controls, and ϵij is the error term. For this appendix, we focus on the case of the undirected
networks in Table 4. Other specifications follow with minor modifications.

Consider a null hypothesis under which the intervention does not affect link formation at all. In
particular, the sharp null hypothesis is that every dyad in the network would have the same relationship
(linked or not linked) regardless of the treatment status of the two nodes involved, and regardless of the
treatment assignments of the nodes in the wider network. Under this null hypothesis, the variable link1

ij
is equal to its potential outcome under any treatment assignment. Thus, under the null hypothesis, the
estimates of the effects of the intervention (β1 and β2) are statistically indistinguishable under various
different treatment assignments.

More specifically, the randomization inference procedure in this case recovers the p-values the follow-
ing way.

Step 1. Estimate Equation (12) under the original treatment allocation, and store β̂1 and β̂2.

Step 2. Reshuffle the treatment vector respecting the original stratification bins, and recompute the TCij
and TTij variables that are consistent with the new treatment allocation, referred to as TCs

ij and
TTs

ij.

Step 3. Reestimate (12) with the reshuffled treatment status,

100 × link1
ij = βs

0 + βs
1 · TCs

ij + βs
2 · TTs

ij + αs · link0
ij + x′ijχ + ϵij (13)

and save the estimates β̂s
1 and β̂s

2.

Step 4. Repeat steps 2 and 3 above B =10,000 times, and compute the randomization inference p-values

pβ1 =
1
B

B

∑
s=1

I
[
|β̂1| > |β̂s

1|
]
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and similarly for β2. Those estimates are reported in the paper.

Fredrickson and Chen (2019) show that randomization inference can be used to estimate causal ef-
fects on both local (e.g. link formation) and global (e.g. centrality measures) network outcomes with
individual-level randomization. Blattman et al. (2021) show how randomization inference can be used to
measure treatment effects and spillovers on a geographical network. For further applications and uses of
randomization inference, see Duflo et al. (2007), Athey and Imbens (2017) and many others.

A.2 Interpreting Reduced-Form Estimates of Centrality Differences

In equation 3, we regress a node’s centrality on its treatment status. These estimates, as discussed in
Section 4.2, must be interpreted as relative differences between treatment and control nodes, as opposed
to treatment effects. The estimates are, nevertheless, causal, in the sense that these relative differences
are due to the intervention. They are unbiased estimates of the expected average difference in centrality
between treated and control nodes.

Importantly, our estimates cannot be interpreted as an average treatment effect. In fact, in the context
of network centrality, it is not straightforward to define an average treatment effect, and such effects are
often not the parameter of primary interest. Moreover, centrality measures are highly interdependent,
and the Stable Unit Treatment Value Assumption (SUTVA, Rubin 1974) will be violated. While treatment
effects bounds can be estimated even when SUTVA violations are present (Manski, 2013), the required
assumptions are likely too strong for a setting in which the outcomes themselves are non-localized network
measures.

Let us demonstrate the appropriate interpretation of our estimates with a simple example. Consider a
small network of five nodes, one of which was treated at random, with realized treatment vector

T = {T1, T2, T3, T4, T5}

with Ti ∈ {0, 1} and |T| = 1. We observe realized centrality measures for all nodes:

c = {c1, c2, c3, c4, c5}

One important parameter of interest in this context is the expected difference in centrality between
treated and control nodes. This parameter allows us to shed light on the determinants of relative (as
opposed to absolute) centrality within a given network. This is particularly relevant for network-based
targeting, where policies typically target the most central nodes in a network based on their relative
positions as opposed to their raw centrality scores. Within the context of our simple example with a single
randomly-treated node, we can define this parameter as follows:

ρ =
5

∑
i=1

(
cTi=1,T−i=0

i − 1
4 ∑

j ̸=i
cTi=1,T−i=0

j

)
P(Ti = 1)

where cTi=1,T−i=0
j is the potential outcome for node j when only node i is treated. We can produce an

unbiased estimate of ρ by taking a simple difference of means. Suppose that in our realized sample, node
k was treated. Then, we obtain the estimate

ρ̂ = ck −
1
4 ∑

j ̸=k
cj.

Taking the expectation over different realizations of T, this estimator is unbiased:

E(ρ̂) =
1
5

5

∑
i=1

cTi=1,T−i=0
i − 1

5

5

∑
i=1

1
4 ∑

j ̸=i
cTi=1,T−i=0

j = ρ (14)
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While the parameter we estimate is relevant and has a simple causal interpretation, it does not corre-
spond to any parameter that would typically be thought of as an average treatment effect. First, because node
centrality measures are interdependent, and depend on the entire vector of treatment statuses, defining a
“treatment effect” for node i is not straightforward. For example, we could compare the treated node’s
centrality in a network in which only that node is treated to its potential outcome under no treatment cT=0

i .
Or, we could compare its potential outcome in a fully treated network cT=1

i to the untreated network cT=0
i .

Second, even if we settle on a “treatment effect” definition, we cannot produce an unbiased estimate of
the average treatment effect across nodes with our data.

For example, if we define the average treatment effect as the expected effect on the treated node’s
centrality relative to the node’s potential outcome in the untreated network, we then seek to estimate the
following parameter:

βATE =
5

∑
i=1

(
cTi=1,T−i=0

i − cT=0
i

)
P(Ti = 1) =

1
5

5

∑
i=1

cTi=1,T−i=0
i − 1

5

5

∑
i=1

cT=0
i .

Referring to equation 14, the problem becomes clear. Because cTi=1,T−i=0
j ̸= cT=0

j , in general this

expected value will not be equal to βATE.
Nevertheless, with our data we are able to test sharp null hypothesis of no treatment effect, for any

node, under any treatment vector (Fredrickson and Chen, 2019). Under this null hypothesis, the potential
outcomes are equal to the realized outcomes, cT

i = ci, for any treatment vector T. This null hypothesis
implies zero expected centrality difference between treated and control students,

E(ρ̂) =
1
5

5

∑
i=1

(
ci −

1
4 ∑

j ̸=i
cj

)
= 0,

and we can test the null hypothesis using randomization inference p-values for the parameter estimate
ρ̂.

A.3 Proof of Theorem 5.1

Proof. For a node in the treatment group, the expected degree is

E(di|Ti = 1) = (NT − 1)PTT + NCPTC

= (NT − 1)PTT + NCPCC + NC(PTC − PCC).

For a node in the control group, the expected degree is

E(di|Ci = 1) = (NC − 1)PCC + NT PTC

= (NC − 1)PCC + NT PCC + NT(PTC − PCC)

= (N − 1)PCC + NT(PTC − PCC).

Because NC > NT and PTC > PCC,

E(di|Ti = 1)− E(di|Ci = 1) > (NT − 1)PTT + NCPCC − (N − 1)PCC ≥ 0.
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A.4 Calibration Details

Network formation. To calibrate the model, we match parameters to moments in our empirical infor-
mation network as follows. First, we note that under this model both the baseline network and endline
network are still general random graphs, with unconditional link probabilities represented similarly to
those in equation (5), but with with link probabilities that depend on the academic types of the nodes.

Between pairs of control nodes, these link probabilities are the same at baseline and at endline, and are
symmetric in θ1 and θ2.

P(g0
ij = 1|Ti = Tj = 0) = P(g1

ij = 1|Ti = Tj = 0) = Pθ1θ2
CC = Pθ2θ1

CC ≡ P(ν > −κθ1θ2
CC )P(ν > −κθ2θ1

CC )

In our data, the probability of an endline information-link between two control students in the same school
and form is used to estimate these probabilities as follows:

P̂LL
CC = 0.08 P̂HL

CC = 0.11 P̂HH
CC = 0.21

These estimates allow us to simulate a simple baseline network. To simulate a corresponding endline
network, we start by constructing a “shadow” network g̃1. This is the network of links that would exist
at endline absent the intervention, but allowing for residual network changes to occur over time. In order
to simulate a shadow network that is suitably correlated with the baseline network, we must estimate
the probability of a shadow link (or equivalently, an endline link) between control nodes conditional on a
baseline link

P(g1
ij = 1|g0

ij = 1, Ti = Tj = 0, θi = θ1, θj = θ2) = (1 − δ)2 + 2δ(1 − δ)
√

Pθ1θ2
CC + δ2Pθ1θ2

CC ≡ Pθ1θ2
CC|CC (15)

P(g̃1
ij = 1|g0

ij = 1, θi = θ1, θj = θ2) = Pθ1θ2
CC|CC

Note that this probability depends on the types {θi, θj} but is symmetric in these types. If a link exists in

the baseline network, the probability it should appear in the shadow network, P̂θ1θ2
CC|CC is estimated directly

from the moment (15) in the data. That is, we take the probability that a control-pair with types θ1 and θ2
is linked at endline, conditional on a link existing at baseline:

P̂LL
CC|CC = 0.35 P̂HL

CC|CC = 0.41 P̂HH
CC|CC = 0.48

Conversely, if a link does not exist in the baseline network, the probability that it should appear in the
shadow network can be calculated using Bayes’ rule.

P(g̃1
ij = 1|g0

ij = 0, θi = θ1, θj = θ2) =
Pθ1θ2

CC

1 − Pθ1θ2
CC

(
1 − Pθ1θ2

CC|CC

)
This probability, that a pair of control students is linked at endline given there is no link at baseline, is
also estimated directly from the corresponding moment in the data.

P̂LL
CC|!CC = 0.05 P̂HL

CC|!CC = 0.07 P̂HH
CC|!CC = 0.13

Next, we simulate an endline network by adding links to to the shadow network. We assume that for fixed
θ1, θ2, κθ1θ2

CC is weakly smaller than κθ1θ2
TC , κθ1θ2

CT and κθ1θ2
TT . That is, information is valuable and not costly to

spread. This implies that Pθ1θ2
CC is weakly smaller than Pθ1θ2

TC and Pθ1θ2
TT , consistent with our reduced-form

empirical results (see Table 4). Then, conditional on having a link in the shadow network, the probability

4



of having a link in the endline network is one.

P(g1
ij = 1|g̃1

ij = 1, θi = θ1, θj = θ2) = 1

Conditional on having no link in the shadow network, the probability of a link in the endline network
depends on the treatment statuses and academic types of the nodes involved.

P(g1
ij = 1|g̃1

ij = 0, Ti = Tj = 0, θi = θ1, θj = θ2) = 0

P(g1
ij = 1|g̃1

ij = 0, Ti = Tj = 1, θi = θ1, θj = θ2) = 1 −
P(ν < −κθ1θ2

TT )P(ν < −κθ2θ1
TT )

P(ν < −κθ1θ2
CC )P(ν < −κθ2θ1

CC )
=

Pθ1θ2
TT − Pθ1θ2

CC

1 − Pθ1θ2
CC

P(g1
ij = 1|g̃1

ij = 0, Ti = 1, Tj = 0, θi = θ1, θj = θ2) = 1 −
P(ν < −κθ1θ2

TC )P(ν < −κθ2θ1
CT )

P(ν < −κθ1θ2
CC )P(ν < −κθ2θ1

CC )
=

Pθ1θ2
TC − Pθ1θ2

CC

1 − Pθ1θ2
CC

We estimate the relevant moments from our endline data as follows:

P̂LL
TT = 0.09 P̂HL

TT = 0.13 P̂HH
TT = 0.29 (16)

P̂LL
TC = 0.08 P̂HL

TC = 0.12 P̂LH
TC = 0.12 P̂HH

TC = 0.25

These calculations allow us to simulate an endline network based on the shadow network. We now have
all the required ingredients to simulate an baseline network, a shadow network, and an endline network
with appropriately correlated links.

Academic performance. Next, we calibrate our model of academic performance. We modeled a student’s
academic score yi as follows.

yi = si + τ(ai)Ti + τ(ai) ∑
j:g1

ij=1

TjQij (17)

We begin by taking the conditional expectation. We abuse notation to write τ(θi) = E(τ(ai)|θi). While
we will focus on capturing this average effect, we do not explicitly assume treatment effects to be uniform
within ability-types. In the model of link formation we do assume that the expected number of treated
links is independent of ability ai given type θi.

E(yi|Ti, θi) = E(si|θi) + τ(θi)Ti + qτ(θi)E( ∑
j:g1

ij=1

Tj|Ti, θi) (18)

For a particular Ti and θi, we can use final exam scores in the year of the intervention to match
E(yi|Ti, θi).
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E(yi|Ti = 1) = 0.38 (19)

E(yi|Ti = 0) = 0.26

E(yi|Ti = 1, θi = θH) = 1.43

E(yi|Ti = 0, θi = θH) = 1.38

E(yi|Ti = 1, θi = θL) = 0.26

E(yi|Ti = 0, θi = θL) = 0.13

The last expectation in equation 18 can also be matched to a corresponding moment in the data, making
use of the number of high and lower-ability treated students as well as the link probabilities we computed
in equation 16.

E( ∑
j:g1

ij=1

Tj|Ti = 1, θi = θH) = 3.37 (20)

E( ∑
j:g1

ij=1

Tj|Ti = 0, θi = θH) = 3.36

E( ∑
j:g1

ij=1

Tj|Ti = 1, θi = θL) = 2.29

E( ∑
j:g1

ij=1

Tj|Ti = 0, θi = θL) = 2.12

Next, we subtract the conditional expectation for the control arm from the conditional expectation for
the treated arm, as follows.

E(yi|Ti = 1, θi = θH)− E(yi|Ti = 0, θi = θH) = τ(θH) + qτ(θH)(3.37 − 3.36)

0.05 = τ(θH)(1 + 0.01q)

E(yi|Ti = 1, θi = θL)− E(yi|Ti = 0, θi = θL) = τ(θL) + qτ(θL)(3.41 − 3.28)

0.12 = τ(θL)(1 + 0.16q)

Then, we take the unconditional expectation for the control arm.

E(yi|Ti = 0) = E(si) + qτ(θH)E( ∑
j:g1

ij=1

Tj|Ti = 0, θi = θH) + qτ(θL)E( ∑
j:g1

ij=1

Tj|Ti = 0, θi = θL)

0.26 = 0 + q(3.36τ(θH) + 2.12τ(θL)) (21)

Here, we matched E(yi|Ti = 0) to the endline control-arm mean, and E(si) to the mean from the previ-
ous school year, which is zero due to normalization. We now have three equations with three unknowns,
which we can solve to obtain:

q = 0.67

τ(θH) = 0.05

τ(θL) = 0.11
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Appendix Figures and Tables

Appendix Figure A1: Degree Distribution at Baseline and Endline, Information Network
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Notes: Degree distribution at baseline and endline. Information network. Sample restricted to nodes
observed at both times.
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Appendix Figure A2: Degree Distribution in Our Data vs AddHealth
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Notes: Degree distributions computed over our data for the information, personal and full networks; and the National Lon-
gitudinal Study of Adolescent Health ("AddHealth") obtained from https://www.icpsr.umich.edu/web/ICPSR/studies/21600/
datasets/0003/variables/ODGX2?archive=icpsr and https://www.icpsr.umich.edu/web/ICPSR/studies/21600/datasets/0003/
variables/IDGX2?archive=icpsr
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Appendix Figure A3: Link Strength and Link Dynamics

Panel A: Information network Panel B: Personal network
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Notes: Panels A-D: link strength between pairs of nodes. Each link consists of five sublinks (see Table 1), strength is defined as the
fraction of sublinks present. In all four panels, strength is calculated conditional on the presence of a link. Panels E-F: link dynamics
between baseline and endline.
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Appendix Figure A4: Baseline Academic Ability and Network Degree

Panel A: Baseline degree Panel B: Endline degree
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Notes: Correlation between baseline academic ability (percentile) and network degree (percentile) at baseline and endline.
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Appendix Figure A5: SIR Model, Degree Centrality Targeting

Panel A: Ever informed, 20 seeds and T = 1 Panel B: Total Diffusion, 20 seeds and T = 1
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Panel E: Ever informed (q = 0.1, T = 4) Panel F: Total diffusion (q = 0.1, T = 4)

0

25

50

75

100

0 10 20 30 40 50
Number treated (N=100)

N
um

be
r 

ev
er

 in
fo

rm
ed

Targeting
Centrality−based
Centrality−based, stable network
Centrality−based, without treatment effect
Random
Random, stable network 0

100

200

300

0 10 20 30 40 50
Number treated (N=100)

N
um

be
r 

ev
er

 in
fo

rm
ed

Targeting
Centrality−based
Centrality−based, stable network
Centrality−based, without treatment effect
Random
Random, stable network

Notes: Simulations of 100-node networks, with 1000 replications for each set of parameter values. Network-based targeting involves
targeting the top nodes by degree. q∗ = 0.1 and T∗ = 4 are set to equal the reciprocal of the top eigenvalue and diameter of the graph
respectively, as in Banerjee et al. (2019).
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Appendix Figure A6: SIR Model, Eigenvector Centrality Targeting

Panel A: Ever informed, 20 seeds and T = 1 Panel B: Total Diffusion, 20 seeds and T = 1
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Panel E: Ever informed (q = 0.1, T = 4) Panel F: Total diffusion (q = 0.1, T = 4)
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Notes: Simulations of 100-node networks, with 1000 replications for each set of parameter values. Network-based targeting involves
targeting the top nodes by eigenvector centrality. q∗ = 0.1 and T∗ = 4 are set to equal the reciprocal of the top eigenvalue and diameter
of the graph respectively, as in Banerjee et al. (2019).
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Appendix Figure A7: Threshold Model, Degree Centrality Targeting

Panel A: Number informed (λ = 2, T = 1) Panel B: Number informed (λ = 2, T = 4)
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Notes: Simulations of 100-node networks, with 1000 replications for each set of parameter values. Network-based targeting involves
targeting the top nodes by degree centrality.

Appendix Figure A8: Threshold Model, Eigenvector Centrality Targeting

Panel A: Number informed (λ = 2, T = 1) Panel B: Number informed (λ = 2, T = 4)
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Notes: Simulations of 100-node networks, with 1000 replications for each set of parameter values. Network-based targeting involves
targeting the top nodes by eigenvector centrality.
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Appendix Figure A9: SIR Model, Centrality-Based Versus High-Ability Targeting

Panel A: SIR, ever informed (q = 1, T = 1) Panel B: SIR, total diffusion (q = 1, T = 1)
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Panel C: SIR, ever informed (q = 0.1, T = 4) Panel D: SIR, total diffusion (q = 0.1, T = 4)
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Panel E: Threshold model (λ = 2, T = 1) Panel F: Threshold model (λ = 2, T = 4)
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Notes: Simulations of 100-node networks, with 1000 replications for each set of parameter values. Network-based targeting involves
targeting the top nodes by diffusion centrality, with parameters q and T matching the parameters of the SIR diffusion model.
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Appendix Figure A10: Centrality-Based Targeting and Baseline Ability
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Notes: Simulations of 100-node networks, with 1000 replications for each set of parameter values. Diffusion centrality calculated using
q = 1 and T = 1 (equivalent to degree). The dashed line corresponds to the share of top-centrality nodes that are high-ability in our
baseline data.
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Appendix Table A1: Comparison to Alternative Networks

Full Network Coleman High School Diffusion of Microfinance

Mean SD Mean SD Mean SD

Degree 12.71 5.98 7.83 3.43 8.43 5.92
Eigenvector Centrality 0.33 0.18 0.29 0.22 0.07 0.13
Number of length-2 walks 216.45 98.32 80.74 39.62 115.79 113.33
Diffusion 3.52 1.75 4.24 2.40 2.60 3.02
Betweenness 0.01 0.01 0.02 0.03 0.00 0.01

Notes: Comparison to alternative networks. "Coleman High School" is the high-school network from Coleman (1964). "Diffusion of Microfinance" from Banerjee
et al. (2013). "SD" refers to the standard deviation across observations.

Appendix Table A2: Dynamics of Link Formation

Link at
endline

Info link
created

Info link
broken

Personal
link created

Personal
link broken

Full network
link created

Full network
link broken

Treat-Control x No Baseline Link 0.463∗∗

(0.183)
p = 0.053

Treat-Control x Baseline Link 3.68∗∗∗

(1.25)
p = 0.008

Treat-Treat x Baseline Link 5.25∗

(2.90)
p = 0.035

Treat-Treat x No Baseline Link 1.13∗∗

(0.465)
p = 0.108

Treat-Control 0.465∗∗∗ -0.525∗∗∗ 0.069 0.081 0.423∗∗ -0.456∗∗∗

(0.169) (0.162) (0.132) (0.133) (0.184) (0.174)
p = 0.027 p = 0.024 p = 0.655 p = 0.626 p = 0.074 p = 0.064

Treat-Treat 1.05∗∗ -0.378 -0.281 -0.045 0.522 -0.366
(0.428) (0.390) (0.301) (0.316) (0.447) (0.419)

p = 0.030 p = 0.465 p = 0.426 p = 0.906 p = 0.330 p = 0.506

R2 0.1342 0.0273 0.0388 0.0163 0.0235 0.0285 0.0405
Observations 82,711 82,711 82,711 82,711 82,711 82,711 82,711

Notes: Dyadic regressions. Unit of observation is a pair of students in the same form and school, i and j. The outcome is coded as 100 if there is a connection and 0 otherwise.
“Treat-Control” is equal to 1 if i is treated and j is control, or vice-versa. “Treat-Treat” is equal to 1 if both i and j are in the treatment group. Covariates are interacted with
the indicator for presence of link at the baseline. Specifications have baseline link, same-class and same-gender controls, and include form fixed effects. The sample consists
of students present at both baseline and endline. Heteroskedasticity-robust standard errors in parentheses and randomization inference p-value with “p = ”. Stars represent
classical inference p-values with *** p<0.01; ** p<0.05; * p<0.1.
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Appendix Table A3: Directed Links with Second-order Effects

Information Full Personal

Treat-to-Control Link 0.346∗∗ 0.275∗ -0.078
(0.140) (0.159) (0.111)

p = 0.053 p = 0.207 p = 0.530
Treat-to-Control Link x Number of Treated Friends of i at Baseline 0.056 -0.029 0.039

(0.098) (0.090) (0.087)
p = 0.665 p = 0.823 p = 0.719

Treat-to-Control Link x Number of Friends of i at Baseline -0.020 -0.017 -0.050
(0.031) (0.029) (0.034)

p = 0.588 p = 0.632 p = 0.225
Treat-to-Control Link x Number of Treated Friends of j at Baseline 0.233∗∗ 0.257∗∗∗ 0.231∗∗∗

(0.102) (0.093) (0.088)
p = 0.265 p = 0.323 p = 0.647

Treat-to-Control Link x Number of Friends of j at Baseline -0.040 -0.058∗ -0.041
(0.034) (0.030) (0.036)

p = 0.435 p = 0.303 p = 0.632
Control-to-Treat Link 0.738∗∗∗ 0.697∗∗∗ 0.120

(0.146) (0.164) (0.115)
p = 0.001 p = 0.003 p = 0.351

Control-to-Treat Link x Number of Treated Friends of i at Baseline 0.233∗∗ 0.219∗∗ 0.332∗∗∗

(0.100) (0.093) (0.088)
p = 0.271 p = 0.478 p = 0.256

Control-to-Treat Link x Number of Friends of i at Baseline -0.047 -0.064∗∗ -0.088∗∗

(0.029) (0.028) (0.035)
p = 0.331 p = 0.231 p = 0.168

Control-to-Treat Link x Number of Treated Friends of j at Baseline -0.082 -0.020 0.081
(0.110) (0.099) (0.094)

p = 0.612 p = 0.893 p = 0.472
Control-to-Treat Link x Number of Friends of j at Baseline 0.065∗ 0.036 -0.050

(0.036) (0.033) (0.035)
p = 0.239 p = 0.456 p = 0.243

Treat-to-Treat Link 1.06∗∗∗ 0.742∗∗ -0.235
(0.279) (0.305) (0.205)

p = 0.002 p = 0.067 p = 0.365
Treat-to-Treat Link x Number of Treated Friends of i at Baseline 0.299 0.123 0.204

(0.216) (0.191) (0.174)
p = 0.279 p = 0.716 p = 0.646

Treat-to-Treat Link x Number of Friends of i at Baseline -0.081 -0.081 -0.072
(0.060) (0.055) (0.059)

p = 0.249 p = 0.277 p = 0.426
Treat-to-Treat Link x Number of Treated Friends of j at Baseline 0.185 0.357∗ 0.335∗

(0.218) (0.197) (0.172)
p = 0.532 p = 0.260 p = 0.373

Treat-to-Treat Link x Number of Friends of j at Baseline 0.103 0.069 -0.072
(0.069) (0.062) (0.063)

p = 0.210 p = 0.378 p = 0.421
Number of Treated Friends of i at Baseline -0.051 -0.044 -0.094∗∗

(0.043) (0.042) (0.040)
p = 0.474 p = 0.572 p = 0.196

Number of Friends of i at Baseline 0.030∗∗ 0.054∗∗∗ 0.060∗∗∗

(0.013) (0.013) (0.017)
p = 0.349 p = 0.260 p = 0.072

Number of Treated Friends of j at Baseline -0.105∗∗ -0.121∗∗∗ -0.095∗∗

(0.046) (0.043) (0.042)
p = 0.177 p = 0.107 p = 0.199

Number of Friends of j at Baseline 0.265∗∗∗ 0.228∗∗∗ 0.104∗∗∗

(0.016) (0.014) (0.017)
p = 0.392 p = 0.280 p = 0.163

R2 0.1046 0.1272 0.0974
Observations 165,422 165,422 165,422

Notes: Dyadic regressions. Unit of observation is a pair of students in the same form and school, i and j. The outcome is coded as 100 if i named j as a contact
and 0 otherwise. “Treat-to-Control” is a dummy equal to 1 if i is treated and j is control, and other covariates are defined similarly. Column “Information”
refers to information network, followed by the personal and full networks. Specifications have number of treated friends of i and j at the baseline, number of
friends of i and j at baseline, baseline link, same-class and same-gender controls, and include form fixed effects. Heteroskedasticity-robust standard errors
in parentheses and randomization inference p-value with “p = ”. Stars represent classical inference p-values with *** p<0.01; ** p<0.05; * p<0.1.
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Appendix Table A4: Information Access and Centrality in the Contact Network

Degree Eigenvector
Number of
Length-2

Walks
Diffusion Betweenness

Average
Link

Strength

Treatment -0.093 -0.040 -1.41 -0.037 0.013 0.010∗

(0.246) (0.058) (3.55) (0.060) (0.072) (0.006)
p = 0.705 p = 0.497 p = 0.670 p = 0.536 p = 0.849 p = 0.071

Control Mean 10.8 0.000 143.9 0.000 0.000 0.464
R2 0.285 0.281 0.361 0.237 0.099 0.150
Observations 1,402 1,402 1,402 1,402 1,402 1,402

Notes: Estimated differences between treated and control students in the contact network for five measures of centrality (degree, eigenvector,
number of length-2 walks, diffusion, and betweenness centralities) and average link strength (equation 3). Eigenvector, diffusion and betweenness
centralities are normalized. Contact links are identified based on the survey question “[1,2,3] days ago, did you just hang out, have conversations or
play with friends?” Column 6 is calculated based on the fraction of days during which the pair spent time together. Regressions have controls for
baseline measure of the outcome, gender, SES, stratification bins and class fixed effects. “Control Mean” represents the mean of the outcome in
the control arm. The sample consists of students present at both baseline and endline (N=1,402). Heteroskedasticity-robust standard errors in
parentheses and randomization inference p-value with “p = ”. Stars represent classical inference p-values with *** p<0.01; ** p<0.05; * p<0.1.
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Appendix Table A5: Heterogeneous Effects

Degree Eigenvector
Number of
Length-2

Walks
Diffusion Betweenness

Average
Link

Strength

Panel A. By use of the digital Library

Treatment 0.426 0.065 7.28 0.059 0.024 0.005
(0.339) (0.071) (4.98) (0.071) (0.080) (0.006)

Treatment x High Browsing 1.03∗ 0.227∗∗ 9.69 0.247∗∗ 0.414∗∗ 0.005
(0.550) (0.115) (7.59) (0.116) (0.165) (0.008)

Control Mean 10.1 0.000 142.9 0.000 0.000 0.299
R2 0.512 0.416 0.630 0.416 0.373 0.187
Observations 1,402 1,402 1,402 1,402 1,402 1,402

Panel B. By academic ability

Treatment 0.918∗∗ 0.165∗ 13.4∗∗ 0.167∗ 0.206 0.011∗

(0.396) (0.095) (5.26) (0.093) (0.144) (0.006)
p = 0.008 p = 0.027 p = 0.005 p = 0.028 p = 0.024 p = 0.111

Treatment x Academic Ability 0.092 0.036 -2.20 0.042 0.068 -0.007
(0.601) (0.130) (8.10) (0.131) (0.190) (0.009)

p = 0.865 p = 0.747 p = 0.769 p = 0.714 p = 0.609 p = 0.419

Control Mean 10.1 0.000 142.9 0.000 0.000 0.299
R2 0.510 0.414 0.630 0.414 0.367 0.187
Observations 1,402 1,402 1,402 1,402 1,402 1,402

Panel C. By SES

Treatment 1.10∗∗∗ 0.256∗∗ 14.8∗∗∗ 0.260∗∗ 0.282∗ 0.008
(0.423) (0.103) (5.18) (0.104) (0.161) (0.007)

p = 0.002 p = 0.001 p = 0.002 p = 0.002 p = 0.007 p = 0.220
Treatment × SES -0.273 -0.145 -4.96 -0.143 -0.086 -0.002

(0.608) (0.132) (8.16) (0.133) (0.195) (0.009)
p = 0.606 p = 0.196 p = 0.512 p = 0.205 p = 0.513 p = 0.802

Control Mean 10.1 0.000 142.9 0.000 0.000 0.299
R2 0.510 0.415 0.630 0.415 0.367 0.187
Observations 1,402 1,402 1,402 1,402 1,402 1,402

Panel D. By gender

Treatment 0.908∗∗ 0.201∗∗ 17.1∗∗ 0.180∗∗ 0.136 0.013∗∗

(0.444) (0.082) (6.63) (0.083) (0.106) (0.006)
p = 0.023 p = 0.011 p = 0.006 p = 0.022 p = 0.133 p = 0.025

Treatment × Male 0.101 -0.033 -8.69 0.012 0.186 -0.011
(0.593) (0.121) (8.25) (0.123) (0.171) (0.009)

p = 0.854 p = 0.770 p = 0.260 p = 0.914 p = 0.166 p = 0.225

Control Mean 10.1 0.000 142.9 0.000 0.000 0.299
R2 0.510 0.414 0.630 0.414 0.368 0.188
Observations 1,402 1,402 1,402 1,402 1,402 1,402

Panel E. By baseline degree

Treatment 0.751∗∗ 0.134∗ 10.6∗∗ 0.142∗ 0.082 0.007
(0.349) (0.071) (4.75) (0.073) (0.078) (0.007)

p = 0.025 p = 0.054 p = 0.025 p = 0.045 p = 0.230 p = 0.311
Treatment × High Degree 0.451 0.104 3.67 0.096 0.338∗ 9.53 × 10−5

(0.617) (0.134) (8.39) (0.135) (0.200) (0.009)
p = 0.403 p = 0.360 p = 0.634 p = 0.400 p = 0.014 p = 0.992

Control Mean 10.1 0.000 142.9 0.000 0.000 0.299
R2 0.510 0.414 0.630 0.414 0.371 0.189
Observations 1,402 1,402 1,402 1,402 1,402 1,402

Notes: Heterogeneous treatment effects on the information network along five measures of centrality (degree, eigenvector, number of length-2 walks, diffusion,
and betweenness centralities) and average link strength. Eigenvector, diffusion and betweenness centralities are normalized. Panel A interacts the treatment
variable with above-median hours of the digital library use during the experiment (“High Browsing”); Panel B with above-median exam scores at the baseline;
Panel C with SES (SES) defined as respondent’s house having access to electricity and running water; Panel D with gender; and Panel E with above-median
baseline degree. Regressions have controls for the covariate main effect, baseline degree, gender, SES, stratification bins and class fixed effects. “Control Mean”
represents the mean of the outcome in the control arm. The sample consists of students present at both baseline and endline (N=1,402). Heteroskedasticity-robust
standard errors in parentheses and randomization inference p-value with “p = ”. Stars represent classical inference p-values with *** p<0.01; ** p<0.05; * p<0.1.
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Appendix Table A6: Alternative Network Definitions

Links
Created

Links
Broken

Intersection
Degree In-Degree Out-Degree Weighted

Degree

Panel A. Information Network

Treatment 0.647∗∗∗ -0.316∗∗ 0.281∗∗∗ 0.699∗∗∗ 0.247 0.392∗∗∗

(0.240) (0.126) (0.081) (0.258) (0.213) (0.097)
p = 0.003 p = 0.009 p = 0.000 p = 0.002 p = 0.218 p = 0.000

Control Mean 6.28 6.33 1.30 5.65 5.77 2.96
R2 0.247 0.803 0.290 0.599 0.206 0.485
Observations 1,402 1,402 1,402 1,402 1,402 1,402

Panel B. Personal Network

Treatment -0.011 0.0002 -0.051 0.043 -0.205 0.009
(0.147) (0.078) (0.068) (0.134) (0.129) (0.051)

p = 0.948 p = 0.998 p = 0.448 p = 0.751 p = 0.107 p = 0.860

Control Mean 3.81 3.93 1.41 3.62 3.69 1.86
R2 0.198 0.810 0.264 0.323 0.228 0.358
Observations 1,402 1,402 1,402 1,402 1,402 1,402

Panel C. Full Network

Treatment 0.497∗ -0.325∗∗ 0.218∗∗ 0.608∗∗ 0.121 0.200∗∗∗

(0.262) (0.142) (0.103) (0.270) (0.248) (0.063)
p = 0.041 p = 0.015 p = 0.034 p = 0.012 p = 0.618 p = 0.001

Control Mean 7.60 7.33 2.59 7.68 7.82 2.41
R2 0.250 0.779 0.371 0.586 0.248 0.491
Observations 1,402 1,402 1,402 1,402 1,402 1,402

Notes: Estimated differences in centrality between treated and control students considering alternative definitions of the network. First
and second columns decompose the main effects into links that were created and broken, respectively. Third, fourth and fifth columns
alternatively use the intersection, in- and out- degrees. Sixth column computes the weighted degree by the number of interactions within
the subcomponents of each network. Panel A considers the information network, followed by the personal network (Panel B) and the full
network (Panel C). Regressions have controls for baseline degree, gender, SES, stratification bins and class fixed effects. “Control Mean”
represents the mean of the outcome in the control arm. The sample consists of students present at both baseline and endline (N=1,402).
Heteroskedasticity-robust standard errors in parentheses and randomization inference p-value with “p = ”. Stars represent classical inference
p-values with *** p<0.01; ** p<0.05; * p<0.1.
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Appendix Table A7: Robustness to the Exclusion of Covariates

Degree Eigenvector
Number of
Length-2

Walks
Diffusion Betweenness

Average
Link

Strength

Panel A. Information Networks

Treatment 0.851∗∗ 0.138∗ 11.4∗∗ 0.151∗∗ 0.222∗∗ 0.007∗

(0.356) (0.074) (4.78) (0.075) (0.103) (0.004)
p = 0.008 p = 0.040 p = 0.011 p = 0.027 p = 0.004 p = 0.116

Control Mean 10.1 0.000 142.9 0.000 0.000 0.299
R2 0.225 0.097 0.443 0.094 0.071 0.117
Observations 1,402 1,402 1,402 1,402 1,402 1,402

Panel B. Personal Network

Treatment -0.018 -0.055 -0.724 -0.043 -0.002 0.004
(0.181) (0.061) (1.58) (0.063) (0.066) (0.006)

p = 0.923 p = 0.399 p = 0.669 p = 0.509 p = 0.971 p = 0.561

Control Mean 5.91 0.000 49.9 0.000 0.000 0.325
R2 0.181 0.053 0.363 0.052 0.045 0.105
Observations 1,402 1,402 1,402 1,402 1,402 1,402

Panel C. Full Network

Treatment 0.734∗ 0.089 11.0∗ 0.106 0.183∗∗ 0.003
(0.383) (0.071) (6.37) (0.071) (0.091) (0.003)

p = 0.039 p = 0.176 p = 0.066 p = 0.110 p = 0.014 p = 0.356

Control Mean 12.9 0.000 218.3 0.000 0.000 0.193
R2 0.257 0.095 0.505 0.094 0.067 0.108
Observations 1,402 1,402 1,402 1,402 1,402 1,402

Notes: Estimated differences between treated and control students for five measures of centrality (degree, eigenvector, number of length-2
walks, diffusion, and betweenness centralities) and average link strength. Eigenvector, diffusion and betweenness centralities are normalized.
Regressions include only stratification bins. Panel A considers the information network, followed by the personal network (Panel B) and the
full network (Panel C). "Control Mean" represents the mean of the outcome in the control arm. The sample consists of students present at both
baseline and endline (N=1,402). Heteroskedasticity-robust standard errors in parentheses and randomization inference p-value with "p = ". Stars
represent classical inference p-values with *** p<0.01; ** p<0.05; * p<0.1.
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Appendix Table A8: Information Access and Centrality in Low-Attrition Schools

Degree Eigenvector
Number of
Length- 2

Walks
Diffusion Betweenness

Average
Link

Strength

Panel A. Information Network

Treatment 1.12∗∗∗ 0.155∗∗ 14.6∗∗ 0.174∗∗ 0.228∗∗ 0.007
(0.421) (0.075) (5.87) (0.079) (0.102) (0.006)

p = 0.003 p = 0.029 p = 0.008 p = 0.017 p = 0.004 p = 0.245

Control Mean 10.9 0.000 164.7 0.000 0.000 0.296
R2 0.515 0.444 0.622 0.428 0.402 0.204
Observations 791 791 791 791 791 791

Panel B. Information Network: probability of being in top 5%

Treatment 0.024 0.021 0.023 0.022 0.023 0.014
(0.020) (0.019) (0.019) (0.019) (0.020) (0.021)

p = 0.186 p = 0.243 p = 0.203 p = 0.199 p = 0.189 p = 0.476

Control Mean 0.052 0.047 0.051 0.047 0.047 0.049
R2 0.305 0.256 0.286 0.304 0.258 0.062
Observations 791 791 791 791 791 791

Panel C. Personal Network

Treatment 0.192 0.042 1.16 0.033 0.058 -0.004
(0.236) (0.071) (2.05) (0.077) (0.085) (0.007)

p = 0.417 p = 0.573 p = 0.598 p = 0.677 p = 0.493 p = 0.602

Control Mean 6.27 0.000 56.1 0.000 0.000 0.317
R2 0.366 0.346 0.527 0.277 0.199 0.160
Observations 791 791 791 791 791 791

Panel D. Full Network

Treatment 0.984∗∗ 0.117 15.4∗∗ 0.130∗ 0.191∗∗ 0.004
(0.458) (0.076) (7.77) (0.079) (0.095) (0.004)

p = 0.020 p = 0.107 p = 0.042 p = 0.079 p = 0.017 p = 0.307

Control Mean 13.9 0.000 253.0 0.000 0.000 0.189
R2 0.522 0.423 0.679 0.405 0.367 0.211
Observations 791 791 791 791 791 791

Notes: Regression restricting the sample to the two national schools, which have very low attrition. Panel A shows the treatment effects on five measures
of centrality (degree, eigenvector, number of length-2 walks, diffusion, and betweenness centralities) and average link strength on the information network
(equation 3). Eigenvector, diffusion and betweenness centralities are normalized. Regressions have controls for baseline measure of outcome (and, in Panel
B, baseline centrality measure), SES, stratification bins and class fixed effects. Panel B shows the probability of being in the top 5% central within forms on
the information network. Panel C observes the effect on personal networks, and Panel D on the full network. "Control Mean" represents the mean of the
outcome in the control arm. The sample consists of students present at both baseline and endline. Heteroskedasticity-robust standard errors in parentheses
and randomization inference p-value with "p = ". Stars represent classical inference p-values with *** p<0.01; ** p<0.05; * p<0.1.
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Appendix Table A9: Predictors of Centrality at Endline

Degree Eigenvector Centrality Diffusion Centrality

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Panel A. Information Network

Baseline Degree 0.536∗∗∗ 0.510∗∗∗

(0.026) (0.028)
Baseline Eigenvector Centrality 0.607∗∗∗ 0.584∗∗∗

(0.031) (0.034)
Baseline Diffusion Centrality 0.614∗∗∗ 0.586∗∗∗

(0.030) (0.034)
Academic Ability 2.38∗∗∗ 1.11∗∗∗ 0.456∗∗∗ 0.233∗∗∗ 0.478∗∗∗ 0.232∗∗∗

(0.270) (0.231) (0.055) (0.050) (0.056) (0.050)
SES 1.53∗∗∗ 0.867∗∗∗ 0.338∗∗∗ 0.146∗∗∗ 0.334∗∗∗ 0.154∗∗∗

(0.273) (0.229) (0.056) (0.049) (0.056) (0.049)
Male -0.568 0.114 -0.129 0.154∗∗ -0.138 0.087

(0.356) (0.305) (0.087) (0.078) (0.086) (0.075)

R2 0.471 0.227 0.485 0.364 0.127 0.381 0.368 0.112 0.384
Observations 1,402 1,402 1,402 1,402 1,402 1,402 1,402 1,402 1,402

Panel B. Personal Network

Baseline Degree 0.337∗∗∗ 0.308∗∗∗

(0.027) (0.027)
Baseline Eigenvector Centrality 0.364∗∗∗ 0.287∗∗∗

(0.027) (0.029)
Baseline Diffusion Centrality 0.366∗∗∗ 0.314∗∗∗

(0.028) (0.030)
Academic Ability 0.810∗∗∗ 0.485∗∗∗ 0.214∗∗∗ 0.138∗∗∗ 0.263∗∗∗ 0.165∗∗∗

(0.150) (0.141) (0.048) (0.046) (0.051) (0.048)
SES 1.02∗∗∗ 0.822∗∗∗ 0.368∗∗∗ 0.289∗∗∗ 0.374∗∗∗ 0.294∗∗∗

(0.156) (0.148) (0.051) (0.050) (0.054) (0.052)
Male -0.768∗∗∗ -0.284 -0.702∗∗∗ -0.414∗∗∗ -0.519∗∗∗ -0.268∗∗∗

(0.224) (0.216) (0.077) (0.080) (0.080) (0.081)

R2 0.287 0.221 0.308 0.286 0.258 0.322 0.226 0.172 0.255
Observations 1,402 1,402 1,402 1,402 1,402 1,402 1,402 1,402 1,402

Panel C. Full Network

Baseline Degree 0.532∗∗∗ 0.504∗∗∗

(0.025) (0.026)
Baseline Eigenvector Centrality 0.599∗∗∗ 0.567∗∗∗

(0.029) (0.032)
Baseline Diffusion Centrality 0.594∗∗∗ 0.563∗∗∗

(0.029) (0.032)
Academic Ability 2.58∗∗∗ 1.27∗∗∗ 0.447∗∗∗ 0.233∗∗∗ 0.467∗∗∗ 0.236∗∗∗

(0.298) (0.255) (0.054) (0.048) (0.055) (0.049)
SES 1.94∗∗∗ 1.28∗∗∗ 0.369∗∗∗ 0.204∗∗∗ 0.368∗∗∗ 0.216∗∗∗

(0.301) (0.254) (0.055) (0.047) (0.055) (0.048)
Male -0.749∗ 0.244 -0.283∗∗∗ 0.034 -0.202∗∗ 0.060

(0.405) (0.343) (0.085) (0.075) (0.085) (0.074)

R2 0.476 0.264 0.493 0.373 0.143 0.391 0.361 0.121 0.381
Observations 1,402 1,402 1,402 1,402 1,402 1,402 1,402 1,402 1,402

Notes: Regressions of endline degree, eigenvector centrality, diffusion centrality on their baseline values (Columns 1, 4, and 7), on academic ability, high SES (SES), and male (Columns 2, 5 and 8) and all
(Columns 3, 6 and 9). Eigenvector and diffusion centralities are normalized with respect to the control arm mean and standard deviation. Diffusion centrality parameters follow Banerjee et al. (2019) with
q equal to the reciprocal of the top eigenvalue, and T equal to the diameter of the graph. Academic Ability is defined as above-median exam score at baseline. SES is equal to 1 if respondent’s house has
electricity and running water. All regressions have class fixed effects. Heteroskedasticity-robust standard errors in parentheses. *** p<0.01; ** p<0.05; * p<0.1.
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Appendix Table A10: Treatment Effects on Academic Scores

English Biology

Panel A. Overall effects

Treatment .103** .063
(.050) (.047)

p = .046 p = .192

Panel B. Heterogeneous treatment effects

Treatment x Below Median Ability .195** .143**
(.076) (.067)

p = .016 p = .043
Treatment x Above Median Ability .003 -.025

(.062) (.064)
p = .964 p = .707

Control Mean .000 .000
Observations 1412 1406

Notes: Table reproduced from Derksen et al. (2022). Treatment effects on final exam scores. Ability defined as above (below) median
exam scores (average of English and Biology) at the baseline. We include a control for baseline exam score, an indicator for missing
baseline score, and strata fixed effects. Randomization was stratified by school, form, above median achievement and past internet
use. Robust standard errors in parentheses. * p<0.10, ** p<0.05, *** p<0.01. Randomization inference p-values based on 10,000
replications denoted as “p =”.

24


	1 Introduction
	2 Providing Access to Information
	2.1 Experimental design
	2.2 Information Seeking Behavior

	3 Network Data
	3.1 Definitions and Measurement
	3.2 Centrality Measures
	3.3 Balance and Summary Statistics

	4 Results
	4.1 The Effect of Information Access on Link Formation
	4.2 The Effect of Information Access on Network Centrality

	5 Model, Calibration and Simulations
	5.1 A Model of Strategic Link Formation
	5.2 Extension and Calibration 
	5.3 Model Fit and Average Treatment Effects
	5.4 Counterfactual Policy Simulations
	5.5 Information Diffusion and Academic Performance
	5.6 Inequality and Academic Welfare

	6 Conclusion
	A Appendix
	A.1 Randomization Inference for Dyadic Regressions
	A.2 Interpreting Reduced-Form Estimates of Centrality Differences
	A.3 Proof of Theorem 5.1
	A.4 Calibration Details


